Issue Number 80 Fall 1997 US $4.00

Reader to Readercccecevurcceneeneeeee. Letters and messages
o B/P BiOS «.cvvererneecsneeesseneccnneeee Banked/Portable Bios, Part 1
Program This!ccceceeeeneee. PC Serial Ports - ASM and C
Cheap Hard Disk Controller................ Adapting PC cards
Simplex IIL.......cccecesesucansesasasansesesse. Homebuilt CPU, Part 3
Real Computingccccevsussecsssaceees.. Newton, Java, Small C
High Speed Serial for 65xx Add a 16550 to 6502
Small System Support.........cccceeeseruesueneeee. C and Assembler
European Beat........ccceceeereencnenee.. dBase I & ZCPR TCAP
Computer Corner WIN-NT, MMX,, Real World

ISSN # 0748-9331 Hands-on Hardware and Software

Kibler Electronics

Serving the
Industrial Electronics Community
since 1978

Specializing In
Hardware Design and
Software Programming

Previous Projects include:

PLC ladder programming (15,000 lines)
8051 Remote I/0O using MODBUS
6805 Instrumentation Controller

68000 Real Time Embedded Operations

NETBIOS programming and Debugging
Forth Projects and Development
HTML Design and programming

Articles, Training, and Documentation

Bill Kibler
Kibler Electronics
P.O. Box 535
Lincoln, CA 95648-0535
(916) 645-1670

e-mail: kibler@psyber.com
k http://'www.psyber.com/~kibler

\

Y,

Hiding in Plain Sight...

Some of the most interesting, challenging
programming is being done outside the
prevailing paradigms. It’s been this way for
years, and some companies regard its SPEED,
COMPACTNESS, EFFICIENCY and VERSATILITY

as their private trade-secret weapon.

It has penetrated most of the FORTUNE 500,
it’s a veteran in AEROSPACE, it’s in SPARC
WORKSTATIONS, and it’s how “plug and play”
is implemented in the newest POweRr PCs.
In fact, it’s lurking around a lot of corners.

Its Form. Surprised? Call now to sub-
scribe* and learn more about today’s Forth.

Forth Dimensions
510-89-FORTH Fax: 510-535-1295

*Ask for your free copy of "10 Whys to Simplify Programming"

TCJ now has products from
SAGE MICROSYSTEMS EAST

Selling and Supporting the Best in 8-Bit Software

Z3PLUS or NZCOM (now only $20 each)
ZSDOS/ZDDOS date stamping BDOS ($30)
ZCPR34 source code ($15)
BackGrounder-ii ($20)

ZMATE text editor ($20)

BDS C for Z-system (only $30)

DSD: Dynamic Screen Debugger ($50)
ZMAC macro-assembler ($45 with printed manual)

Kaypro DSDD and MSDOS FORMATS
Order by phone, fax, mail, or modem and use
Check, VISA, or MasterCard. Please include

$3.00 shipping and Handling for each order.

The Computer Journal
P.O Box 3900
Citrus Heights, CA 95611-3900
(800) 424-8825 / Fax (916) 722-7480
TCJ/DIBs BBS (916) 722-5799

The Computer Journal

Founder
Art Carlson

Editor/Publisher
Dave Baldwin

Previous Publishers
Bill D. Kibler
Chris McEwen

Technical Consultant
Bill D. Kibler

Contributing Editors
Ronald W. Anderson
Richard Rodman
Helmut Jungkunz
Tilmann Reh

The Computer Journal is pub-
lished by DIBs Electronic Design and
mailed from The Computer Journal,
P. O. Box 3900, Citrus Heights, CA
95611, (916) 722-4970.

Opinions expressed in The Com-
puter Journal are those of the re-
spective authors and do not neces-
sarily reflect those of the editorial
staff or publisher.

Entire contents copyright © 1997
by The Computer Journal and re-
spective authors. All rights reserved.
Reproduction in any form prohibited
without express written permission of
the publisher.

Subscription rates within the
US: $24 for 6 issues, $44 for 12 is-
sues. Send subscription, renewals,
address changes, or advertising in-
quires to: The Computer Journal,
P.O. Box 3900, Citrus Heights,CA
95611-3900.

Registered Trademarks

It is easy to get in the habit of using company
trademarks as generic terms, but these trademarks are
the property of the respective comp it is important
to acknowledge these trademarks as their property to
avoid their losing the rights and the term becoming pub-
lic property. The following frequently used trademarks
are acknowledged, and we apologize for any we have
overlooked.

Apple ll, i+, lic, lle, Lisa, Macintosh, ProDos;
Apple Computer Company. CP/M, DDT, ASM, STAT,
PIP; Digital Research. DateStamper, BackGrounder i,
Dos Disk; Plu*Perfect Systems. Clipper, Nantucket,
Nantucket, Inc. dBase, dBASE Ii, dBASE Ill, dBASE i
Plus, dBASE IV, Ashton-Tate, Inc. MBASIC, MS-DOS,
Windows, Word; MicroSoft. WordStar, MicroPro Inter-
national. {BM-PC, XT, and AT, PC-DQS; |BM Corpora-
tion. Z80, 2280; Zilog Corporation. Turbo Pascal, Turbo
C, Paradox; Borland International. HD64180; Hitachi
America, Ltd. SB180; Micromint, Inc.

Where these and other terms are used in The

puter Journal, they are acknowledged to be the
property of the respecti panies even if not specifi-
cally acknowledged in each occurrence.

TCJ The Com_puter Journal
Issue Number 80, Fall 1997

Editor’'s COlUMN.....cccccciiiiimemniirerneenicsrnenessecsnnsesresrreneens &
And in this issue...

About the 'Net.................. ceressessssssesnsennennnnns resesessrssissane 3
A New Column - Internet Myths.
By Ted Deppner

Reader to Reader..........ccormmciiienremmeceineacencessasennsscsnnense &
Letters from our readers.

Banked/Portable /O Systemcccccimiiivcvisccnnencninneans 7
B/P Bios, Part 1.
By Harold F. Bower and Cameron W. Cotrill

Program This!cccoeviinivercnicirnssnnnscennncsenes S |)
The PC Serial Port in ASM and C.
By Dave Baldwin

Real Computing......cccceeeneeeeeeee tresssssssssssnannnes ceeeresnnenns 19
Timer, Newton, Java, and Small-C
By Rick Rodman.

Cheap Hard Disk Controller.........cccccuvruuenees cerersnnennes 21

Adapting PC plug-in cards for other systems.
By Allison Parent

Simplex ... cesnesssssssnsesannss 20
Homebuilt microcoded TTL processor, Part 3.
By Dave Brooks.

High Speed Serial for 65xx........... S cennenenns 27
How to add a 16550 Uart to a 65xx system.
By André Fachat

The European Beat............. SO 7.2
dBase Il & ZCPR TCAP
By Helmut Jungkunz.

Small System Support cressrnrrreneces veesesensnrnens 36
C and Assembler - 68xx
By Ronald W. Anderson.

TCJ Store ...ccceceevnnnnene S— rrerseenennn vesrserrrnannns Y- § |
Things for sale from TCJ.

Support Groups for the Classicsccecvviiecnnnnes .42
Back ISSUES.....eveeeeeeeennniisiinicnnnnnesannceniiees reeesrerennnnnnnns 44
The Computer Cornercccevveerrceecnnen. rresseenesesnnens 46
WIN-NT, MMX, and the Real World

By Bill Kibler.

TCIWant Adsccccceevrvirirnnnnaeee ceererenneaes cererensrennnesesnens 48

Editor's Column

And in this issue...

| We have Win95 in the house now. My wife's laptop for

work came with it and she's required to use it. The only
crashes she's had involve the online connection she uses for
work. Otherwise there have been no 'problems’ but...

Looking at Win95 on her computer has verified my suspi-
cions about it. The primary purpose of Win95 was to boost

| lagging sales by Microsoft and the other major PC software

and hardware manufacturers. They made enough changes
to make sure that your old software wouldn't run as well as
their new software. They also made many little changes in
the names of things so that finding a function that you used
in Win3.1 or DOS sometimes becomes a little challenging.

Another thing is the hardware. Win95 expects certain things
from the hardware and can be uncooperative when it doesn't
find them. Win95 is 'designed' to be smarter than the aver-
age consumer that buys it (and I wouldn't be surprised if it
is). It was not intended to cooperate with the minority of us
who think we can set things up ourselves. My recommen-
dation is that if you really need Win95, get a new machine
that is intended to run it (and save your old machines for
your old software). It can minimize the problems you run
into.

I'm not against Windows or any other particular software or
hardware. The TCJ 'philosophy' is that you use products for
what they're good for. I use Win3.1 programs to publish
TCJ. No DOS program that I know of will do the page lay-

| out that I need. On the other hand, I always make a note of

the things that people have done that seem to benefit them
more than me. I've paid (a lot) for the software I use and I
don't particularly like the idea that I should pay again to do
the same thing because someone else needs to sell a new
product.

With the exception of Desk-top publishing and graphics,
every program I use to make money runs under DOS. Well,
actually, SLR's Z80ASM runs under CP/M and it still makes
me some money. Obviously, most of the 'big' companies
aren't making any money from me at the moment. I'm sure
they'll 'get me' eventually. When I just gotta have the latest
upgrade, it will be a Win95 version and I'll have to break
down and buy a Win95 machine. Then I'll have every thing
from my first CP/M machine (a Bigboard 1) to a Pentium
here in my office. All I have to do is find a place to put all

‘| of them.

Dave Baldwin,
Editor/Publisher

PS: If you find yourself dependent, like I am, on older soft-
ware, Make Sure You Have Backup copies!! Many compa-
nies are out of business and many others won't support their
older software.

We lead off with B/P Bios by Hal Bowers and Cam Cotrill.
They're still working on it and refining it. Next is my ar-
ticle on the PC serial ports in ASM and C. There have
been a lot of requests for working code for the PC serial
ports so here are three small terminal programs, two in
ASMS86 and one in C. This is one of those 'easy' things.
One of my customers recently thanked me for doing a cus-
tom version for him in only two weeks. I told him it wasn't
hard, all it took was ten years preparation.

Allison Parent, a new author for TCJ but an old hand at
micros and CP/M, writes about adapting PC hard disk cards
to other systems in Cheap Hard Disk Controller. Part 3 of
the continuing saga of Simplex III is here also along with
Rick Rodman's Real Computing column.

Another new author, André Fachat, presents his High Speed
Serial for the 65xx, Add a 16550 to a 6502. He shows
what it takes to adapt a chip to a system it wasn't designed
for. I'm not sure what the 8250/16550 were designed for,
but he has it working with his Commodore C64.

Ron Anderson continues with Small System Support and
Bill Kibler with The Computer Corner. Helmut Jungkunz
is back with the European Beat this issue with an article
about coercing dBase to cooperate with the ZCPR TCAP.

Next Time...

Part two of B/P BIOS is in the next issue along with Ron
Anderson's PC serial and parallel port test programs in C.
There will be more PC programming articles along with em-
bedded hardware and software in the issues to come.

Don Jhindra, author of The Little Big LAN, is working on
some networking articles but I don't know when they will be
ready. He's done some fascinating things with LBL. In
addition to standard network cards (Ethernet and Arcnet),
LBL has built-in support for both serial and parallel ports.
I bought a copy but I haven't had time to install it. Since
Don also provides programming support, it looks like I
should be able to make LBL talk to just about anything.

The Computer Journal / #80

About The 'Net

by Ted Deppner

The Internet: Myth No More

The Internet is the latest storehouse of myths in people’s
minds. Some myths are heated, (pornography galore!), some
are bad (those nasty Internet Police), and the bare truth about
the Internet gets little air time. Myths usually talk about

- what the Internet is, completely ignoring what it isn’t. We’ll
talk about both and give you a more complete view of the
Internet as it is, and what it may become.

The Internet is above all else a reflection of society.
There is something for everyone online. There are match-
cover collectors, TTL chip directories, model railroad fanat-
ics, crocheters and knitters, libraries, state and federal agen-
cies, and so on. (and TCJ, of course) You can find the lat-
est in golf clubs, USR’s X2 upgrade, or just the drivers for
your sound card. And yes, you can find pornography, politi-
cal propaganda, and the latest in home built explosives. This
is a reflection of society, remember?

Myth #1: Pornography and other stuff. Just like in the
physical world around you, you make the choices about
where you go and how you spend your time. You make the
choices, they aren’t forced on you. If you don’t like the adult
book store, you don’t go in. You can just as easily choose
the local electronics hut of retired hardware. It’s the same
on the Internet: you go where your interest are, and stay away
from those “other” areas. To each his own.

Myth #2: The Internet Police and Big Brother. Those
guys sure do get around. Hah. The Internet is a large col-

"lection of cooperating but separate entities—there is no cen-
tralized anything. As such, there is no central repository of
information, no government affiliation or governmental
control, and no police. This doesn’t mean you can do any-
thing you want and “get away with it”. While there is no
central control and record keeping, records are kept.

A record of where you have been, what file you have
downloaded, or where you sent email to is kept, but the con-
tents of these items is not. Somewhere deep in your service
provider’s logs it says “me@here.com” sent an email to
“him@there.com”, but what the message said is not re-
corded. There’s a log entry that someone at there.com viewed
my home page, but who that actually was isn’t listed.

Time, date and origination are the extent that is kept.
Your name, address, or anything identifying you as “you”
are not kept, unless you choose to provide that information.
However, armed with time, date, origination, and a court
order, your Internet service provider could easily determine
who was there at that time.

Myth #3: Etiquette and morals. Moral ineptitude is
frowned on by the Internet community. If you send out the
latest Make Money Fast file, expect lots of email calling you
names. Email 10,000 people your latest sales flier out of the
blue and expect your service provider to shut your account
off.

Illegal activity is always illegal, and stuff you couldn’t
do in your local communities you can’t reasonably expect to

The Computer Journal / #80

do online either. If you have questions, contact your service
provider, they should be more than happy to help you.

Myth #4: The Internet has everything. Well, yes it
does, though it may not be exactly what you wanted. Any-
thing that is freely available in the world is online. Works
by Shakespeare, Poe, and Doyle, sports scores, stock reports,
and so forth. You can find plenty of home built circuit dia-
grams for all sorts of devices, but you probably won’t find
the latest schematic for your TV online. You won’t find the
latest book by Stephen King online, nor up to the minute
stock information. You can find reviews of King’s latest
book, and you can get your stock information delayed by
fifteen minutes. Of course, if you want to pay to get King’s
book you can, likewise you can get your stocks up to the
minute if you subscribe to that service.

Myth #5: Buying the Unknown. Everywhere you go
in society, you have offers to purchase things: Books, maga-
zines, new computers, the latest Microsoft collection of bugs,
and new “must have” widgets. In the real world, you have
to pull out the flat wallet, peek through it, and put forth
green or plastic. So also goes the Internet. In general, ev-
erything online is free. If it is not free, it will tell you so,
and make you give your credit card numbers and name be-
fore letting you on. You won’t just stumble into some pay
area and all unknowing start racking up charges. Once
again, it’s your choice. Good companies will provide a free
sample of what they offer, so you can get a taste.

Myth #6: They’ll steal my Credit Cards! Recent ver-
sions of Internet browsers can encrypt what you’re sending,
and you can use security programs like PGP (Pretty Good
Privacy) for email. Getting your numbers would be a needle
in haystack kind of problem in the first place, so add to that
encryption of one sort or another, and the fact that there are
much easier targets for thieves, and it’s not a huge threat.
Obviously you shouldn’t say “hey everybody here’s my credit
card”, but then you wouldn’t do that in the real world either.

The Internet is a vast and wonderful place. It reflects the
society of the world around us, and each of us can person-
ally benefit from what the Internet offers. We can each have
an effect on what the Internet is, through our participation.
There are email discussion groups and USENET news
groups with topics that range from iguana care to how to
repair TVs. You can even put your own web pages online,
detailing to the world how to make the Mr. Spiffy Widget,
or simply stating how you made your networked coffee ma-
chine. So step forth without fear and newly armed with the
truth about these six common Internet myths.

Happy Netting! s=====
— Ted Deppner, ted@psyber.com, http://www.psyber.com

Ted takes care of the technical stuff at Psyberware where
the TCJ Web pages are located.

READER to READER

Send your letters for Reader to
Reader to:

The Computer Journal
P.O. Box 3900
Citrus Heights, CA 95611-3900

From: Christopher Burian
<cburian@ll.mit.edu>

Subject: 8051 Startup code in TCJ
#78

Thanks for this great article. It’s the
best, maybe only, article I've seen yet
that implements working interrupt-
driven serial and circular queues.

I’m astounded by all the sample code
out there, even sophisticated-looking
monitors, that use queueless polling to
send and receive. It’s either that or
generic pascal-like junk found in next-
“to-useless textbooks.

Luckily, I had a college class on 8088
assy programming which included a
unit on circular queues, interrupts, pro-
gramming the 8250 uart, etc., but most
people don’t get that kind of class. I
guess it’s considered unorthodox and
out of the mainstream to actually teach
students how to write real programs
that run on genuine CPUs. Entirely too
much programming at my U. was taught
in virtual languages which were com-
piled and simulated on virtual comput-
ers existing only in the perverse imagi-
nations of CS professors. So I think
- lots of people are going to find your
8051 introductory article really useful,
as I have.

Despite my previous exposure to queues,
your sample program is a great help to
me in simplifying my own code.

I wish you’d had a little more time/
space to delve into the problem you
discovered wrt interrupt code on NMOS

vs. CMOS chips, and perhaps given an
example of code ordering which you
found not to work, just in case someone
decided to make modifications to your
code. Unlike the hcll’s protective fea-
ture (write within the first 64 clocks
only) the problem you’ve discovered
sounds more like a bug than a feature.

On my current project, I’m again rein-
venting the wheel, making a monitor/
hex-downloader, because just like lots
of other guys, I think I can do it a tiny
bit better. One of the gimmicks I want
to include and haven’t seen anywhere
is intelligent handling of BREAKs sent
from the host. Another is use of hand-
shaking when queues fill up, to handle
delays when programming FLASH dur-
ing a hexfile download, for instance.

I have a couple questions about your
QUE_SND routine. Why isn’t a CLR
C required before the SUBB? And why
use SUBB instead of CJNE?

Thanks, and keep up the good work.
Eagerly waiting for #79,
Chris Burian

I'm glad you liked the 8051 article.
TCJ #77 had an article with similar
code for the Z80-S10 and this issue has
my article on the PC serial ports.

I never did find what the original prob-
lem was. I'm sure it’s a ‘bug’ of some
sort. The Intel 8051 experts couldn’t
figure it out, may not have been inter-
ested. The original program I started
out with was SKELETON.ASM from the
Phillips BBS and it didn’t work on the
CMOS 80C31. Idon’t know whether it
worked on the NMOS version. 1 got a
copy of one of the standard, polling
monitors from a friend and it worked
on all versions of the chips. That veri-
fied to me that the chips were working
and that I just had to do something

different with my program. Iwent back
to the books to see what might be de-
pendent on the sequence and this pro-
gram is where I ended up.

About the QUE _SND routine, the ‘CLR
C’ probably should have been in there.
After looking at the program, it’s prob-
ably just an accident that it works with-
outit. ‘CJINE’ tests for the wrong thing
in this case (NE). I needed to know if it
was equal to 10h. A TX CNT of 0
means that all bytes have been sent. 1
to 10h means that there are bytes to be
sent in the fifo and 10h is the max the
Jifo can hold.

Dave Baldwin, Editor

From: “Jeffrey A. Weiner”
<j_weiner@juno.com>

Subject: XT’s and kindred folk

Kudos on Issue No. 79! Well worth the
boost we all gave you.

I also wanted to note that its a good
thing that TCJ is covering XT-class
machines. Case in point: I rescued 3
ALR Barrister XT system units from
the dumpster of the building I work in.
ALR had scant info on the motherboard
switches, and nothing on the unique
combination controller card that was in
the beasties; connections for 2 pairs of
floppy drives, serial and parallel ports,
clock/calendar, and a mysterious 50-
pin header marked “HIGH DENSITY
DRIVES”. I’'m hopeful that a someone
who reads/ writes for TCJ will e-mail
me some info on this card so’s I can
take advantage of its features.

And those kindred spirits? Well, one
thing I'd like to see is some articles
about doing something useful and/or
different with a DEC Rainbow. I have a
few (!) of them on the premises, and

The Computer Journal / #80

since the International Rainbow Users
Group has hit the bit-bucket, it would
be nice to see some guidance from some
more technically-adept Rainbow
afficianados.

Keep ‘em flying...
Jeff Weiner Chicago, IL

From: Ron Anderson
<rwilande@concentric.net>
Subject: Hard Drives

Dave,

Last July my Conner 830 Mbyte hard
drive crashed. It was eleven months
old. Knowing that it would take a while
to get a warranty repair, and having a
use for that drive in another system, I
bought a new Western Digital 1070
Mbyte drive as a replacement.

Conner had just been bought by Seagate,
and partly due to transposition of two
digits in the Return Authorization num-
ber (my error, not theirs), it took about
six weeks to get the replacement drive
back. Either they sent a new drive or
they replaced the tag on it, because the
new one said Seagate on it.

Shortly after that, I went to “defrag”
the new WD drive and an error mes-
sage appeared saying that parts of the
disk were not accessible. 1 ran
“scandisk” on the drive and it found
“about 1 megabyte of bad sectors all in
the last 150 or so tracks of the 2488 on
the drive. I decided to watch the drive
carefully and to call WD if more bad
sectors were mapped out later. Last
month the drive failed a defrag session
again and I found that another 400K of
sectors had gone bad.

I called WD and they asked me to down-
load a diagnostic from their web site
and run it on the drive, and call back to
report the result. The next day I phoned
them and they said the drive was bad
enough so they would replace it under
warranty. With my credit card number
as collateral, they sent me a new drive
and I transferred a large number of
files after reinstalling DOS and Win-
dows 3.1 on the new drive. 1 ran
scandisk again and before I had all the
software installed, I noted some bad
sectors had to be mapped out, again all
at the very end of the drive.

About at that time, my replacement
Seagate drive quit completely. It

The Computer Journal / #80

sounded like the head servo had gone
crazy, and couldn’t read data from the
drive. I called Seagate and after ten
minutes of tone button pushing on their
“automated service line” the computer
gave up and informed me that there
was a problem and transferred me to a
real live person, who was most helpful,
agreed that the drive was under war-
ranty, and gave me a return authoriza-
tion number. This time I was careful to
see that I got it right, and I have sent
both drives back to their respective
manufacturers.

The next day, I was talking to a friend
who is experiencing the same difficul-
ties with a Western Digital drive. He
reported that about 6 megabytes of sec-
tors had been mapped out, and that the
bad list continues to grow. He has run
the WD diagnostic and was planning to
call for authorization to return the drive
last time I talked to him.

Could it be that the manufacturers in
their race to cram the most data in the
least hardware have pushed the tech-
nology beyond the limit of reliability?
I’'ve used Western Digital drives for
years, and in fact have a couple still
running that had never had a problem
(an old 100 Mbyte drive and a 170
Mbyte).

I’ve ordered a “refurbished” 650 Mbyte
drive to have around as a spare. Maybe
this one was before the technology got
pushed into the area of unreliability.
We’ll see what happens with the
Seagate.

I must add that I was treated very cour-
teously by both Seagate and Western
Digital’s service people. The wait was
minimal (a few minutes) in both cases.

Ron Anderson

From: Ken Deboy

Dear Bill,

I figure that if I’'m going to criticize
Windows95 and Microsoft, I should ex-
plain some of the problems I’ve had
with Win95 and in dealing with
Microsoft, so here goes:

1. The pamphlet (no way it could be
called a “manual™) doesn’t explain how
to do anything. For example, I had to
call a 3rd-party software vendor to find
out how to over-write the MBR so I
could install System Commander

(Win95 doesn’t normally allow this to
be done). Microsoft was no help be-
cause they won’t provide tech support
to someone who obtains Win95 pre-
installed on their computer. (I could
really get into what I think about a
software company that won’t support
their own damn OS, but I won’t.)

2. It sometimes locks up on me, with no
way to recover except turning off the
computer. Of course, there is a dire
warning in the pamphlet to never do
this, but what else is there to do when
even <CTRL-ALT-DEL> doesn’t work?
Never had this problem under Win3.1
(or Linux or OS/2). Thisisn’t a “rare”
occurrence, either...at least 3 times a
week, sometimes even twice in one day.

3. It won’t let me delete DLLs from
.../ WINDOWS/SYSTEM even if they’re
not write-protected. It also won’t let
install programs over-write them if one
tries to install a DLL that is already
there. I have to drop back to DOS to
delete the file, which is fine, since I
know how to do it (no thanks to
Microsoft), but what about the poor soul
who has a Win95 box as their first
computer?

There are other minor frustrations with
Win95, but these are the major prob-
lems I have with it. Sorry for the rant,
but I don’t feel right criticizing a prod-
uct without explaining why I feel the
way I do. I hope Caldera wins their
lawsuit against Microsoft, but I’'m not
betting on it. I feel the only way to
make sure MS doesn’t become a mo-
nopoly is to make sure that other OS’s
are economically viable. I have OS/2
on one computer, and soon I'll have it
on both my computers. When I need a
program, I try to find a version that
will run under OS/2 or Linux. IfI need
a program that is only available under
Win95, I always make sure to write to
the software company and tell them I’d
be interested in purchasing a version of
the program to run under OS/2 or Linux.
Maybe if enough people did that, MS
would lose the strangle-hold they have
on the PC software industry. Well, at
least I can dream...

With best wishes,
Ken Deboy

...................

From: Steve Johnson
Dave:

Enclosed is my early renewal check for
TCI).

Detailed comments about the magazine
should wait for a future message, but
you should know that I always read the
-magazine with a day or two of arrival
and I continue to use the complete set
in my study. I like the practical, prob-
lem solving approach authors take and
the mix of diverse hardware, operating
systems and languages covered. Even
when I'm unlikely to work with a par-
ticular combination of hardware and
software, I enjoy the articles and learn
of practical value.

Subjects of particular interest to me are
small scale networking and operating
systems including Linux and Forth. CP/
M remains of interest and I follow
‘comp.os.cpm’ closely. Like many other
readers, [run MYZ80 instead of nurs-
ing my (diminished) accumulation of
aging Osbornes and their many acces-
sories. During my last binge of old
equipment accumulation, I picked up a
dual set of Siemens 8 inch drives which
interface to an Osborne Executive with
quad density internal drives and dual
external hard disks. It pains me to
admit it, but the Osbornes are less ro-
bust than the Kaypros.

Rick Rodman is one of my favorite TCJ
contributors. My at-home computing
network is much less elaborate that the
Kettlepond Computing facility, which
serves as inspiration. Ibelieve my next
networking step will be to extend the
thinnet from the second floor to my
basement workshop & home brewery
(well I do have other interests besides
computers). That will be a natural time
to get involved with home monitoring
and control.

Enough comment, time to write a check.

~ Signed: Steve Johnson

From: Rick Bromagen
To: Dave Baldwin

Hi Dave!

I just received the last issue of my sub-
scription to TCJ (#79), and that re-

minded me there was something I have
been intending to do for several months
now. It’s time to renew my subscrip-
tion! Let’s have 2 more years please.

I had been trying to figure out how to
add an IDE interface to my Z80 CP/M
system for several years. Then TCJ
published the articles from Tilmann
Reh. That was great work! We all owe
people like Tilmann a big thank you.
Those that have the time, knowledge,
and are willing to share their efforts
with everyone else have my respect.

I assume there are at least a few who
have built the GIDE interface by now,
and have done some tinkering with
BIOS driver software. Of course we all
seem to have different systems and
BIOS’s, so sharing source code is not
simple. I am planning to put a GIDE
on my Eagle II mother board. It al-
ready has a SASI (early SCSI interface)
drive, but I like the challenge of put-
ting a much faster and bigger drive on
this system.

That reminds me, I would like to hear
in TCJ about different ways to add large
hard drives to CP/M. By that I mean
how to have a 40 or 80 megabyte CP/M
drive “partitioned”, and how the BIOS
tables describing it look. I think Ampro
and several other had done this. Is
there a public domain description or
code sample for this?

That TCJ centerfold about the P112
board looks very interesting to me. How
can I get one of these? When will TCJ
offer a group buy? I am busy thinking
up several projects I could “embed” this
and a drive into. How about an embed-
ded household controller with floppy
(ala Circuit Cellar Ink HCS II), or a
portable CP/M system? I remember
David McGlone of the Z-Letter once
mentioned that there was a computer
built in a small, flat portable case, with
maybe an LCD screen. Maybe I will
try pulling the Z80, and putting the
P112 board with a 3.5" drive. How
about a 2.5" hard drive as well? Of
course, battery power will need some
thought. There are a lot of high power
replacement batteries for laptops avail-
able now that could be small and light
weight enough. It would be fun on my
next long airplane trip, to pull out a
CP/M laptop, play some games, or even
do some writing.

DisConnect

Dogbone McGillicutty groaned when
he heard the ‘snap’ that told him his
network fiber had popped out of the
wall. He was just trying to move his
workstation a little bit to make some
room. He started imagining the parade
of people he’d be seeing soon. First
would come the Nettertons network se-
curity people to seec what had happened
to ‘their’ connection. Of course, none
of them could repair the break, but they
could cite you for ‘Illegal Disconnect’,
section blah-blah-blah of the Network
Code. They would tell you to get it
repaired right away. If they were in a
good mood, they’d call repair for you
since, of course, you couldn’t because
you just broke your network connec-
tion.

The last time he had called repair was
from a friends terminal. First, they
asked why he was calling since the sys-
tem was obviously operating since he
was able to call them. Then they wanted
to know why he was using someone
else’s station and did he have permis-
sion to do so. After identifying him-
self, his employer, and his station and
waiting for them to verify that he wasn’t
home using his station, they finally
agreed to come repair it although they
warned him that he would be charged
double if it was a UIP (User Induced
Problem).

After (or maybe even before) the repair
droids showed up would come the
HW2020 (Home& Work) people to find
out why he wasn’t using their
systemware for his each and every need.
And somewhere in one of those groups
would be a Copper-Checker to make
sure he wasn’t one of those that had
found out how to blackbox the old cop-
per network and avoid his responsibili-
ties (and payments). And after all of
those people were done, he’d have to
go through a reconnect session and
verify his ID and his accounts and all
of his passwords which would take a
half a day. Can’t have any illegals on
the Net.

The Computer Journal / #80

Banked/Portable 1/O
System (B/P Bios) Pt |

by Harold F. Bower and Cameron W. Cotrill

For the past several years we have attempted to address
some of what we consider to be fundamental problems in
the 8-bit Z80/Z180/HD64180 system software arena. Our
first effort, ZSDOS, was directed toward what we believed
to be architectural weaknesses in CP/M and its clones in
the late 1980s. Such weaknesses included; inefficient code,
inconsistent implementations of some DOS functions, nu-
merous different and incompatible file Date/Time Stamp-
ing methods, and just plain errors (remember Function 377?).
Now in the 1990s, even more effort is needed to correct the
proliferation of systems designed on faulty (or at least weak)
architectures, and to provide a logical and consistent path
to increase the functionality of our systems.

To understand our concerns in this area, let us review
the way in which CP/M 2.2, as modified by the Z-System,
uses available memory. For standard CP/M and compat-
ible systems, the only absolute memory addresses are con-
tained in the Base Page which is the range of 0 to 100H.
All addresses above this point are variable (within certain
limits). User programs are normally run from the Tran-
sient Program Area (TPA) which is the space from the top
of the Base Page (100H) to the base of the Basic Disk Op-
erating System (BDOS). Figure 1 depicts assigned areas
pictorially along with some common elements assigned to
each memory area.

FRFFHL 5 system Buffers ENV, TCAP, IOP, FCP, RCP
(~5K)
Code + ALV, CSV, Sector Buffers
BIOS ©55K)
: CP/M 2.2, ZRDOS, ZSDOS1
Operating System 3.5K)
Command Processor CCP.ZCPR3x
(2K)
Transient
Program
Area
0100H Base P IOBYTE, Jmp WB, Jmp Dos
0000H ase Fage FCB, Buffer

Figure 1. Typical Z-System Memory Map

The sizes depicted for the Z-System buffers is typical
of many, and allows a certain functionality. It is sometimes
necessary to delete some capabilities to add others, since
every addition in this area pushes the other components
lower, decreasing available TPA space. Likewise, any new
features or more elaborate routines in the Bios decreases
available TPA.

The Computer Journal / #80

There have been some attempts at ameliorating these
difficulties, but none have directly addressed the entire prob-
lem. One system in relatively widespread use is NZCOM.
It allows a fairly easy method of changing systems “on the
fly”. The main drawback, however, is that to obtain large
TPA, system features must be sacrificed by deleting or
downsizing the resident Z-System segments
(FCP,IOP,RCP,NDR,TCAP). To us, this method is only
viable in systems which do not have extended memory ca-
pabilities. With the ever-increasing use of systems based
on the Hitachi 64180 and Zilog Z180, other solutions are
more attractive and offer a larger TPA without sacrificing
system capabilities.

The final major factor contributing to shrinkage of TPA
is the increasing commonality of large hard disk drives.
Disk space is managed by a bit-mapped buffer (ALV) where
each bit represents an allocation block of storage space.
Typical allocation units are 2k for floppy diskettes and 4k
for Hard Disk Partitions. Assuming 4k allocation blocks, a
20 MB drive needs approximately 20000/4 = 5000 bits or
625 bytes. With 80 to 100 MB drives being common these
days (one B/P user reported that the smallest drive he could
obtain was 850 MB!) you should see that several kilobytes
are now required, further reducing available TPA space.

The first requirement to place us on the road to more
powerful systems is to overcome the 64k memory limit im-
posed on direct access by the Z80 family of processors in a
consistent and logical manner. Such a technique, generi-
cally called memory banking, means that we can access more
than 64k of memory for something more than simply a RAM
disk.

One of the first attempts to tackle the 64k memory bar-
rier was Digital Research with CP/M Plus (aka CP/M3).
While it banked both portions of the BIOS as well as the
Basic Disk Operating System (BDOS) and included some
useful additions to the BIOS, it was relatively incompatible
with CP/M 2.2 in many key features. In addition, CP/M
Plus made no provision for banking application code. The
adoption of a CP/M 2.2 standard for the Z-System has served
to widen the compatibility gap even further on the majority
of our systems.

There are some internal inconsistencies in the CP/M 3
architecture as well which were never fully resolved. A
prime case in point is the function to return Disk Free Space

(Function 46). The specification states that three bytes are
returned reflecting the number of available 128-byte records
on a disk. This equates to 2”24 * 128 or 16,777,216 * 128
= 2,097,152 kB. While we know of no one who has actu-
ally installed a single disk partition of more than 2 Gigabytes
on a Z-System, it would create problems since CP/M Plus
can handle disks up to eight times this size, but not cor-
rectly report free space. Simply returning free space in terms
_ of 128-byte records is inconsistent as well since disk space

is allocated in blocks which have a minimum size of 1k,
with 2k and 4k commonly used. This is only one example
of several, and we do not consider it a viable system for
future Z-System growth; although it is still being actively
installed.

Several manufacturers have attempted to bank portions
of operating system software over the years, yet either locked
the software into their hardware as Epson did with the QX-
10, or made such changes as to limit portability of common
tools as in the XLM-180. This latter system, while it used
the Hitachi 64180 processor with its memory mapping ca-
pabilities, required system tailoring of much of the com-
mon Z-System software base.

The release of MicroMint’s SB-180 in the early 1980s
marked a decision point in Z-System development. First, it
retained all standard ZCPR3 definitions, it used a CP/M 2.2
compatible BDOS, and it forced programmers to think more
of portability and compatibility in system software. This
was a major thrust in the development of XBIOS which
placed the greatest possible amount of BIOS code in alter-
nate memory locations outside of the primary 64k address
space. Furthermore, capabilities to bank additional features
(Resident System eXtensions, or RSXs) were widely sup-
ported with DateStamper, DosDisk and others requiring no
sacrifice in TPA to execute. Since its last upgrade, how-

_ever, several severe problems have come to light, among
them are the inability to properly handle hard disk sizes
greater than 32MB and sluggish performance due to bank-
ing of Console routines.

We considered this history and wanted to develop a
system which included as much machine independence as
possible. Not only should newer systems with the 64180/

Z180 processor be included, but S100 systems with banked
memory, addon boards such as Terry Hazen’s MDISK for
the Ampro Little Board, and homebrew systems as well. The
goal here was as much selfish desire as anything else. By
developing a single common architecture, only one tool for
a given purpose would be needed across a variety of ma-
chines. Asan example, Hal has several YASBECs, two SB-
180s (one modified with static memory), an SB180FX, an
Ampro Little Board, a couple of mongrel S-100 systems,
and recently acquired a P112. Each system had its own
Formatter, Configuration utility, Clock type, native disk
formats, etc. To us, this seems out of place now, particu-
larly with the scarcity of systems programmers in the Z-
Community. It made more sense to develop a common soft-
ware architecture so that more programming resources could
be devoted to applications type efforts.

Another goal of the effort was to retain the maximum
compatibility with existing Z-System software for the same
reasons cited above. Customizing a huge number of com-
mon utilities as was done in the XLM-180, seemed to be
the wrong approach. We therefore decided to retain the
greatest possible commonality with CP/M 2.2 (actually our
ZSDOS), and use existing Z-System segments to their great-
est potential without sacrificing performance. As those of
you who tracked our efforts as we developed ZSDOS know,
we do not like slow systems or large code sizes (TCJ issues
37 and 38). We also decided that our architecture had to be
capable of outrageous expansion and extension capabilities
without invalidating previous software efforts. Further, we
wanted to create a general purpose banked memory inter-
face that allows applications programs as well as the oper-
ating system to access alternate banks of memory. The fi-
nal results are the Banked & Portable (B/P) Bios.

B/P Bios attacks the memory problem in a manner
which is easily adaptable to different hardware. All
HD64180/Z180-based systems bank memory in 4k slices,
and many S100 and addon systems bank in 16 or 32k incre-
ments. We therefore decided on an architecture which re-
tains common memory in the upper 32k of address space
(8000-FFFFH), and switches the lower 32k (0-7FFFH)
among any available banks of RAM. Figure 2 displays this
architecture pictorially.

FFFFH
BANK 1
8000}
BANK 0 System User RAM Disk
B S T Max Bank

Figure 2. B/P Bios Memory Scheme

The Computer Journal / #80

BNK1 is ALWAYS present in the address space and is
referred to as the Common Bank. It contains all Z-System
buffers, Common portions of the Bios, BDOS and the Com-
mand Processor as well as the upper portion of TPA. Part
of the Bios which makes B/P unique is the structure which
allows controlled access to other banks in the lower 32k.

At least one 32k bank is required in a minimal banked
B/P system. The system bank, as a minimum, holds por-
" tions Bios and a copy of the Command Processor which
speeds Warm Boots by simply copying the banked code to
the Common bank and executing the warm entry. Figure 3
depicts memory use in a maximally-configured banked sys-
tem. In such configurations the System bank holds banked
portions of; the ZSDos2 operating System, banked Command
Processor, BIOS, and Hard Disk allocation bit maps.

FFFFH Z-System Buffers
User Space
plos H Bios Buffers 8000H
Operating System /| Banked Bios Part
Command Processor |/ | Banked Dos Part
BO00H Transient " | Banked CCP Part
Pt:rger:m CCP Restoral
0100H 0100H
Base Page Base Page Copy
H Q000H
TPA (BankO/Bank1) System Bank

Figure 3. Fully-banked Memory Map

The B/P Bios began with one of Cam’s superb archi-
tectures. He started with the standard CP/M 2.2 Jump Table,
added in those from CP/M Plus with changes to correct some

- of the inconsistencies, then added in a new series to permit
logical and easy access to new routines. The code, in as-
sembly source form, was divided into logically functioning
elements, with the greatest possible amount placed into
machine independent modules. As an example, the Disk
deblocker and IOBYTE decoder functions are machine in-
dependent and need no change between systems, while the
actual disk and character device drivers require custom tai-
loring for each type of computer. Standard interfaces, in
terms of register usage and value limits, result in common
software requirements across vastly different hardware sys-
tems.

Each software module of the Bios includes relocation
directives to the assembler telling it whether the code is to
go into the main memory, or into another bank of memory.
If a non-banked system is assembled, all code is placed into
the main 64k area, while banked systems use the main 64k
area for common code and data as well as banked code and
data areas. All tools (formatter, configuration utility, etc)
automatically accommodate both types of Bios without any
intervention. The choice of whether to bank each section
of code or not was painstakingly examined for performance
and size penalties. Many of our design choices may be
debated, but B/P is here and it works!

The Computer Journal / #80

By itself, fixing the Bios is not a complete answer to
our current Z-System dilemma, but it is a prerequisite. We
also considered it essential to bank the Disk Operating Sys-
tem, Starting with ZSDOS, Hal used the new BIOS bank-
ing functions to bank significant portions of the BDOS. At
every juncture, size and speed were traded off to keep the
system small and fast. We corrected the flaw in the CP/M
Plus Disk Size function cited above by returning four bytes
containing the number of kilobytes free (a more meaning-
ful measure). File Time/Date stamping functions for
DateStamper(tm), P2DOS (CP/M Plus compatible), and Joe
Wright’s NZTIM are all embedded within the Operating
System and are concurrently active. While ZSDos2 is still
a work in progress, copies are included in the B/P Bios
package to allow users to benefit from the newer system.
Latest versions were posted in the BPBIOS: directory on
the Ladera Z-Node until its demise, and no replacement is
yet available. The most recent version of ZSDos2 in 1993
added directory hashing for true speed demons.

Also incorporated in ZSDos2 is a ZCPR34-compliant
Command Line Parser. With the permission of Jay Sage,
we also modified ZCPR34 to operate in the banked envi-
ronment, added many common features of Resident Com-
mand Processor packages, and simplified it to use the new
ZSDos2 Command Line Parser. By folding all features into
the CPR, the need for a Resident Command Processor (RCP)
extension in high memory all but disappears, typically add-
ing 2k to the TPA.

As a closing note to this first installment, systems us-
ing B/P Bios, ZSDos2 and the expanded CPR are currently
in operation on the new D-X Designs Pty Ltd P112,
Micromint’s SB180, a modified SB180 with static memory,
two versions of the SB180FX, three YASBEC configura-
tions including a laptop with VGA LCD display, Ampro
Little Board (with Terry Hazen’s MDISK expansion), and
in non-banked mode on a Compuw/Time S100 and Teletek.
All tools are common across the hardware systems with a
complete Z3 Environment and additional segments typically
resulting in the equivalent of a “standard” 60k CP/M sys-
tem. This size is without the RCP typically used to enhance
the Command Processor.

The next part of this article will describe the B/P Bios
interfaces and standards, while part 3 will cover proposed
standards for the evolving ZSDos2, its associated Command
Processor and some of the support utilities.

Cameron “Cam” Cotrill is a Senior Software Engineer
with Symantec.

Harold “Hal” Bower retired from the US Army Signal
Corps in 1990 and has been active in microcomputing
since 1976.

Program This!
The PC Serial Ports

By Dave Baldwin

The Chips

PC serial ports are the result of deci-
sions made in 1980 and never changed
since then. The 8250 UART from
National Semiconductor was chosen for
the original PC’s. It is a simple, single-
buffered design that is only slightly
more advanced than the old AY-5-1013
hardware uart. It has a bunch of extra
bus control signals designed to make it
‘easy’ to interface to just about any CPU.
It also has all of the modem control
signals available along with two
undedicated outputs.

Other designs of the time were double
buffered (like the 8251) or triple buff-
ered (like the Z80-SIO) meaning that
you could wait longer to read the re-
ceived characters without losing data.
These other chips had limits of their
own, however. Neither had all the
‘modem control signals, the 8251 has to
have CTS true to transmit and the SIO
is designed to work with the Z80 inter-
rupt structure.

Newer versions of the 8250 have been
introduced including the 8250A, the
16450, and the 16550. The 8250A fixed
a couple of errors in the original chip,
the 16450 provided a faster access time,
and the 16550 included 16-byte receive
and transmit fifos. There are also
CMOS versions, the 82C50A and the
16C450. All of them power up to act
like an 8250 (almost). The fifos on the
original 16550 didn’t work, so a 16550A

. version was introduced with working
fifos. 16650 and 16750 versions with
larger fifos are also available now from
other manufacturers.

The Programs
Two programs are presented here, one
in ASM86 and one in ‘C’. A third

program, SIMPLTRM.ASM will be
available on the BBS and the TCJ Web

10

/* SCTERM - Simple C Terminal program, June 1997, by Dave Baldwin
See Issue #80 of The Computer Journal for more info
about this prggram Names of the equivalent labels in

SIMPLTRM and STERM are in

parentheses here.

TCJ Web page: “http://www.psyber.com/~tcj/”

Phone: 800-424-8825
Written for BorlandC 3.1 */

#include <stdio.h>
#include <dos.h>
#include <conio.h>

#include “SCTERM.H”

#define __CPPARGS

/* prototypes */

unslgned int keychk(void) ;
unsigned int getkey(void

void interrupt (*oldvect)(CPPARGS) /* pointer to save old vector */

void interrupt com_isr(__CPPARGS

void getcmd(void) ;

void com_enb void) H
void com_dsb (void) ;
char com_in(void) ;

void com out(char pch) ;
/* variables */

) 3 * interrupt service routine */
/* get function key cmd*/
/* com-port set ug
/* com-port disable */
* get receive char from buffer*/
/* send char to serial */

char sch ; /* character from serial port buffer */
unsigned int keh,kechx ; /* characters from kexboard *

int xflag = 0 ; /* program exit flag

char int_mask ; /* old interrupt mask *I

char new_mask ; /* new interrupt mask */

unsigned | pic_mask = Ox21 ; /* 8259 mask port address */

unsigned pic_eoi = 0x20 ; /* 8259 End-Of-Interrupt port address */
char recerr ;

int i,),k ; /* miscellaneocus ints */

char portnum = 0

char com buf[BUFSiZE] H /* receive buffer */

unsigned buf_hed ; /* buffer char in index */

unsigned buf tal /* buffer char out index */

char signon{ «SCTERM using COM” ;

char signon2] = “ F10 to exit.\r\n” ;
char tc) msg{l]- “From The Computer dournal, (800) 424 8825\r\n” ;

char exitmsg

= “SCTERM terminal program in C.\r\n

char helpmsg[] = “SCTERM/x where x = 1-4 for COM1 thru COM4.\r\n" ;

/*=

- *I

int main(int argc, char *argv[])

* force value for test */
comp.base = 0
if (argc==2)

/* check for port number */
i=0;

k=0;
while (argv[1][i])
1f (argv[1][i++] != ¢/
éontinue;
ortn&m = argv[1}[i] ;

reak ;

}

/* é1n1t01) coﬁmand line check here */

")

The Computer Journal #80

if (portnum=='4'’
comp.base = 30é4;
comp.intr = COM4IRQ;
comp.imsk = COM4MSK;

/* (initab) */

}
if (portnum=-'3'3 {
comp.base = COM3;
comp.intr = COM3iRa;
comp.imsk = COM3MSK;

/* (initab) */

}

if (portnum=='2') { .
comp.base = COM2; /* (initab) */
comp.intr = COM2iRQ;
comp.imsk = COM2MSK;

}

if (portnum=='{') o
comp.base = COM1; /* (initab) */
comp.intr = COM1IRQ;
comp.imsk = COMIMSK;

/* default value */

if (comp.base == 0) (
portnum = ‘2°;
comp.base = COM2;
comp.intr = COM2fR0;
comp.imsk = COM2MSK;

/* (Lomptr) initialize address variables for comm port registers */
comp.ier = comp.base+IER ;

comp.iir = comp.base+IIR
comp.lcr = comp.base+LCR
comp.mncr = comp.base+MCR
comp.lsr = comp.base+LSR
comp.mst = comp.base+MST
comp.scr = comp.base+SCR
comp.baudlo = comp.base ;
comp.baudhi = comp.base+1 ;

/* initialize memory copies of register values for com port */
creg.baud = 12 ;

creg.lcr = 3 ;

creg.mcr = ox0b ;

/* (initab) */

/* (init03) clear screen, setup serial port and interrupt vector */
clrser();

com_enb() ;

/* display signon messages */

cputs(signon) ;

putch portnumg H

cputs(signon2) ;

cputs(tcimsg) ;

/* (nain) azasz===x MAIN PROGRAM LOOP ==s=x=szzz== */

while (xflag == 0) . .
/* while the exit flag is zero */
* check for keyboard input */
if (keychk() & Oxff) {
kch = getkey#) H /* get char from keyboard */
if (kch & Oxff) com_out(kch);/* if the key input notzero, */
/* send it to the serial port */
else getcmd(); /* get function key command */
/* check for serial input */
if (buf_tal != buf_hed) { /* compare head and tail ptrs */
sch = com_in(] ; /* get char from serial buffer */
if (sch) putch(sch) ; /* display it on the screen */

}

/* (prgxt) Emszs==x Program EXIT ====s===z== */

com_dsb() ; /* turn off serial port */
clrser() ;

cputs(exitmsg) ;

cputs tcjmsg? H

return 0 ;

}

unsigned int keychk(void) {

union REGS regs;

int ¢ ;

regs.h.ah = 1; /* check for key ready */
int86(0x16, ®s ®s);

¢ = regs.x.flags & oxa H

¢ “= 0x40 ;

return ¢ ;

The Computer Journal #80

pages. The source code for it is too
fong to fit in the magazine. I may offer
all the code from this issue on a disk if
people ask for it.

These programs will work on any PC
from an XT to a Pentium and are simple
enough that you can modify them for
your own uses. The ASM programs
(DOSTERM and SIMPLTRM) can be
assembled with MASM 4.0 or 5.1,
Borland’s TASM 3.0, or the public
domain Arrowsoft x86 Assembler along
with the Val linker. These last two
were found on the Dunfield Develop-
ment web site and are now on the TCJ
Web pages and the TCJ/DIBs BBS so
you can download them. The ‘C’ ver-
sion was done in Borland C 3.1.

Since MS-DOS and the PC BIOS (like
CP/M) don’t do anything useful with
the serial ports, each of these programs
does it’s own serial port setup.
DOSTERM sets up the port for polled
operation and uses MS-DOS for key-
board and display. If you have
ANSI.SYS loaded, it gives you a very
simple ANSI-PC terminal. SIMPLTRM
and SCTERM set the port up for inter-
rupt driven operation on receive and
polled operation on transmit. This is
the only ‘universal’ setup for interrupt
operation. Transmit and status inter-
rupts and bugs vary enough between
the chips to require some testing and
special handling in the interrupt ser-
vice routines.

If you decide you want to use transmit
and status interrupts, you need to geta
copy of “The Serial Port FAQ’ by Chris-
tian Blum which is now available on
the TCJ web site and BBS. There are
problems with transmit interrupts dis-
appearing on some chips and the inter-
rupt response for multiple interrupts is
different. An interrupt service routine
that takes all of these into account is
shown in The Serial Port FAQ and is
many times longer than the one I'm
using here.

I’ve put a couple of special ‘features’ in
these programs. The ASM programs
are set up so that they will run as EXE
or COM programs. I did this when I
got tired of having to run EXE2BIN
before I could check the results of the
next ‘newer, better’ version. This also
helped when I started making larger
versions that needed to be EXE only
programs. Also, having the three dif-

11

ferent versions lets you compare what’s
been done and see the different ways of
doing essentially the same thing. I've
also tried to kept the names of the rou-
tines the same in all three versions so
you could compare them. Another thing
is that these are all small programs.
Even the ‘C’ version is less than
10kbytes after it’s compiled.

All the programs are organized the same
way. After defining some values, they
check the command line to see if you
want COM1 instead of COM2 which is
the default port. Then they set up an
address table based on the address of
the comm port you’re going to use,
enable the comm port, clear the screen,
and put up the signon messages. The
‘com_enb’ routine is called to initialize
the serial port. Since DOSTERM uses
the MS-DOS console routines, the ‘clear
screen’ is done as an ANSI escape se-
quence in the signon message.

Enabling the Serial port

Before you can use the serial port, you
have to program the chip and set up the
interrupt vector if interrupts are going
to be used. SIMPLTRM and SCTERM
use the MS-DOS functions to get the
old interrupt vector and save it so it can
be restored when the program exits and
then set the vector to point to their own
interrupt service routine, ‘com_isr’.

Next, all three programs program the
serial chip registers to the values needed
for operation.

The 8250 family has 9 or 10 address-
able registers. The ‘Scratch’ register
doesn’t exist on the earliest versions.
In ASM86, only the 8-bit I/O addresses
from 0 to 255 are directly addressable.
For 16-bit /O addresses, you have to
load the DX register with the address
and input or output to/from the AL or
AX register. Since the 8250 registers
are all byte registers, we’ll be using
only AL.

The first thing we do is to disable all
" interrupts from the chip while we’re
programming the rest of the registers
by setting IER (Interrupt Enable Regis-
ter) to 0. Then we send an 83h to the
LCR (Line Control Register) to select
the baud rate registers. The 8250 has
an internal baud rate generator with a
16-bit divider that can divide the baud
rate clock with values from 1 to 65535.
Divide by 0 is undefined as usual.

12

unsigned int getkey(void) {
union REGS regs;

regs.h.ah = 0 ; /* get key */
return int86(0x16, ®s, ®s);

void getcmd() {
kchx = kch/256 ;
if (kchx == €8)
/* is it F10? */

xflag = -1 ;

if (Lchx == 59)

/* then set exit flag */

/* is it F1? */

clrscer() ;

cputs&signon) H
putch(portnum) ;
cputs(signon2) ;
cputs tcimsg) H
cputs (helpmsg) ;

}

/* COM_IN */

char com_in(void) {

char tch ;

tch = com_buf[buf_tal] ; /*
osition ¥/

uf_tal++ ; /*
buf_tal = buf_tal & BUFMSK ; /* and

return tch ; /*

/* COM_OUT */

void com_out(char pch) {
int cntr = 1000 ;
char tst ;

while (cntr-)

/* if it’'s zero, then get extended char */

/* then clear the screen */

get byte from current buffer

adjust buf pointer */

mask and resave it for next
time */
return the char from the buffer */

/* time-out counter to prevent lockup */

/* check time-out counter */

{
tst = inp(comp.lsr) & O0x20 ;
if (tst)

/* test THRE */

/* if true, send char */

outp(comp.base,pch) ;
cntr = 0 ;
break ;

}
}

/* COM_ENB */
void com_enb (void) {
buf_hed = 0 ;

buf_tal = 0 ;

/* Save the old interrupt vector */
oldvect = getvect(comp.intr) ;

/* install the new interrupt handler */

setvect(comp.intr, com_isr);

/* disable interrupts while we set up port */

disable() ;

/* set up serial port registers */
outp(comp.ier,0) ;
outp(comp.lcr,0x83) ;
outp(comp.baudlo,creg.baud) ;

outp(comp.lcr,creg.lcr) ;
outp(comp.mcr,creg.mer)
/* do dummy reads to clear flags */
inp(comp.base) ;

inp(comp.1lsr) ;

outp(comp.ier,1) ;

/* re-enable interrupts now */
enable() ;

/* set up interrupt mask in PIC */
int_mask = inp(pic_mask);

new_mask = int_mask & (!comp.imsk) ;
outp(pic_mask,new_mask) ;

outpéconp.

/* COM_DSB */

void com_dsb (void) ({
outp(comp.ier,0) ;
outp(comp.mcr,0) ;

/* restore the old interrupt mask */
int_mask = inp(pic_mask);
new_mask = int_mask | comp.imsk ;

byte */

*

/* set looptiounter to zero */

and exit */

/* clear fifo pointers */

/* serial chip interrupts off */
/* access baud rate registers */
/* divide by 12 for 9600 baud, low

baudhi,creg.baud >> 8); /* high byte of baud rate divider */
/* set 8Ni
/* turn on DTR, RTS, and OUT2 */

/* serial receive interrupts only */

/* serial chip interrupts off */
/* modem control lines off */

The Computer Journal #80

outp(pic_mask,new_mask) ;
/* restore the old interrupt handler */
setvect(comp.intr, oldvect);

/***NOTE:
This is an interrupt service routine. You can NOT compile this
program with Test Stack Overflow turned on and get an executable
file which will operate correctly. */

#pragma -N- /* stack checking off */

/* COM_ISR */

void interrupt com_isr(__CPPARGS) (

- recerr = inp(comp.Isr) /* read/clear error byte */

com_buf[buf_hed] = inp(comp.base) ; /* read data byte */

buf_hed++; /* adjust and mask pointer */
buf_hed = buf_hed & BUFMSK ;

outp(pic_eoi,0x20) ; /* send EOI to 8259 */

}

/* SCTERM.H - header file for SCTERM.C */
/* COM port and buffer equates */

#define COMt Ox03f8 /* for COM1 */
#define COM1IRQ OxOc

#define COMIMSK 0x10

#define COM2 Ox02f8 /* for COM2 */
#define COM2IRQ OxOb

#define COM2MSK 0x08

#define COM3 0x03e8 /* for COM3 */
#define COM3IRQ OxOc

#define COM3MSK 0x10

#idefine COM4 Ox02e8 /* for COM4 */
#idefine COM4IRQ OxOb

#define COM4MSK 0x08

#define BUFSIZE 0x2000 /[*receive buffer size, must be power of 2 */
#define BUFMSK BUFSIZE-1 /* 1 Less for mask */

#define BASE O /* Base (No real reason to have this) */
#define IER 1 /* Interrupt Enable Register *

#define IIR 2 /* Interrupt ID Register */

#define LCR /* Line Control Register */

#define MCR /* Modem Control Register */

#define LSR /* Line Status Register' */

#define MST /* Modem Status Register */

#define SCR 7 /* Scratch Register */

#define RTS 2 /* rts bit in MCR */

[X4 N

struct comdef { /* addresses of port registers plus IRQ and mask */
int base ;

int ier ;
int iir
int ler
int mer
int 1lsr
int mst
int scr ;
int baudlo H
int baudhi ;
char intr ;
char imsk ;
} comp;

struct COMREG {
unsigned int baud ;
unsigned char lcr ;
unsigned char mcr ;
} creg ;

The Computer Journal #80

The baud rate registers actually use the
same addresses as the data and IER
registers, but they’re in a different
‘bank’. You select the baud rate regis-
ters by setting bit 7 or the LCR to a one.
The standard PC baud rate clock oscil-
latoris 1.8432 MHz. To get 9600 times
16 (153.6 KHz) you divide by 12. You
put 12 in the lower baud rate register
and zero in the high register.

Next we load the LCR with 03h which
unselects the baud rate registers and
sets the chip to 8 data bits, no parity,
and 1 stop bit. The MCR (modem con-
trol register gets loaded with Obh for
the interrupt version and 03h for polled.
The OUT2 bit has to be turned ON in
PC serial ports to enable the interrupt
gate. This is usually a 74L.S125 which
isin series with the INTR line from the
chip and the selected IRQ line on the
bus.

After that, we do some dummy reads of
a couple of registers to clear any flags
that might have been accidently set.
For the polled version in DOSTERM,
this is all that’s needed. For the inter-
rupt versions, we still have to set the
IER to allow receive interrupts and set
the appropriate mask bit in the 8259
PIC (Programmable Interrupt Control-
ler).

The disable routine, ‘com_dsb’, does
the opposite of the enable routine. It
restores the old interrupt vector and
turns off the serial chip interrupts in
SIMPLTRM and SCTERM and it turns
off the modem control lines in all of
them. SIMPLTRM and SCTERM also
restore the previous interrupt mask to
the 8259.

The Main Loop

The main program loop checks for a
keyboard input to see if you want to
send anything and then it checks to see
if you have received anything.
DOSTERM actually polls the serial chip
each time. SIMPLTRM and SCTERM
check the receive buffer to see if the
receive interrupt service routine has put
any characters in the buffer.

If there is a keyboard input, it is checked
to see if it’s an ‘extended’ char code or
a normal character. Normal characters
from 1 to 255 are written to the serial

13

port. Extended codes are checked for
the two commands, F1 and F10, that
are used by these programs. F1 is the
‘help’ command which redisplays the
signon info and F10 is the exit com-
mand.

If there is an input from the serial port,
it is sent to the screen. DOSTERM lets

"MS-DOS handle the control characters
and escape sequences while SCTERM
let’s the video routines built in to the
Borland ‘C’ compiler do it.
SIMPLTRM has routines to do the con-
trol code and escape sequence process-
ing to emulate the basic functions of an
ADMS3 terminal and uses the PC BIOS
routines for video output.

That’s really all there is. Each of these
programs can be used as is or easily
modified to your own needs. They were
left as simple as they are so they would
be reasonably easy to understand.

One of the limits on these programs is
speed. Don’t expect to go above 19.2
KBaud (9600 for DOSTERM) without
errors. In ‘standard’ configurations for
PCs, it turned out that everything from
a 4.77MHz XT to a 486DX2/66 started
getting errors above 19.2Kb. The XT
just plain ran out of steam while the
background processing caused problems
on the 386 and 486. It turns out that
background programs like SMARTDRV
link into to many of the standard DOS
and BIOS routines and use up enough
CPU time to limit the interrupt servic-
ing. When I booted a 386 in a mini-
mum software configuration, it would
run without error at 57.6Kb with these
simple interrupt routines.

An improved version of SIMPLTRM is
available for download on the TCJ FTP
site and the TCJ/DIBs BBS. Called
DIBSTERM.COM, it let’s you select
which serial port you want to use, tell’s
you what kind of serial chip the port
has, and allows you to change the port
while the program is running. It also
puts the modem line status at the top of

" the screen so you can monitor their
status and lets you control the outputs
with function keys. You can also select
the baud rate (from 50 to 115200) and
other parameters along with the hand-
shaking mode. It’s a good testing pro-
gram as well as a simple terminal pro-
gram.

Dave Baldwin

14

DOSTERM.ASM — a simple terminal emulator for PC's
TCJ Web page: “http://www.psyber.com/~tcj/"
Phone: 800-424-8825

Uses MS-DOS console functions
Uses the PC serial port in polled mode.

Can be assembled by MASM 4.0 or 5.1, Borland's TASM,

or the Arrowsoft public domain assembler and Val linker.
This is a ‘COM’ program that can also run as an ‘EXE’.
Look for ‘***' to see what’s required to do this.

There can only one segment, the code (CS) segment.

D e P PR

; EQUATES
false equ H
true equ not false

cr equ Odh ;
1f equ Oah ;
; duplex mode

echo equ false ;false = full duplex, true = half-duplex
;standard hardware handshake

rts equ 2 ;rts bit in com_mer

handshake equ true ;include handshake code if true

;COM port equates

com1 equ 03f8h ;for COM1

com2 equ 02f8h ;for COM2

com3 equ 03e8h ;for COM3

com4 equ 02e8h ; for COM4

3

; Macros for handshaking routines

; These are used anywhere that video scroll can occur because
s the video BIOS routines turn off interrupts when they scroll.
RTSOFF MACRO

; rts OFF

tF handshake

push dx

push ax

pushf

mov dx,com_mcr

in al,dx H

and al,not rts ;rts OFF

out dx,al H

popf

pop ax

pop dx
ENDIF
ENDM

RTSON MACRO

; rts ON

IF handshake
push dx
push ax
pushf
mov dx,com_mcr
in al,dx ;
or al,rts ;rts ON
out dx,al H
popf
pop ax

pop dx
ENDIF P
ENDM

cseg segment para public ‘CODE’
org 100h ;COM program
assume cs:cseg,ds:cseg,es:cseg,ss:cseg ;COM program

dosterm proc far ;entry point from DOS
; *** set segment reg’s for EXE/COM version, all same segment
mov ax,cs ;
mov es,ax ;make SS and ES = CS, leave DS = PSP
mov ss,ax ;
mov sp,-2 ; set stack pointer
; *** save psp pointer in real stack along with a ‘0’
push ds H
Xxor ax,ax ;
push ax H
;get command tail
mov bx,80h ;point to command line
; (uses DS as PSP pointer)
mov al,[bx] ;get first byte which is char count
cmp al,0 ;1f 0 (no chars),
je initOb ; use default port (com2)

The Computer Journal #80

jcheck the rest of the command line

init01: inc bx ;next char
mov al,[bx] ;
cmp al,” *® H
je inatot ;skip spaces
’
cmp al,”/” ;first non-space char must be slash
jne initOb ; or else use default port (com2)
inc bx ;next char
nov al,{bx] ;
cmp al,’?! H
jne init02 ;ijmp if not ‘?’,
mov dx,offset errmsg ; else show ‘errmsg’
jmp prgext ; and exit
]
init02: cmp al,”t1" ;is it COM1?
jb initOb ;if not then use COM2
cmp al,”4’ H
jbe initOc
initOb: mov al,”2° ;set default comm number
initOc: mov byte ptr com_num,al ;save ASCII comm number
; *** Now set DS = CS because we’'re done with PSP
mov dx,cCs
mov ds,dx

; set com port address table according to ‘com_num’ in AL
call comptr

iput up signon message

init03: mov dx,offset signon ;get signon message
mov ah,0%h ;display string function
int 2th ;let dos do 1t
mov dl,byte ptr com_num ;get comm number
mov ah,06h ;display char function
int 2th ;let dos do it
mov dx,offset signon2 yget signon message
mov ah,09h ;display string function
int 21h ;let dos do 1t
’
call com_enb ;start up communications port
1
’
3 Main program loop
1
H
main: mov dl,0ffh H
mov ah,6 ;direct input
int 21h ;ask DOS for keyboard input
jz main4d ;nho char, skip
cmp al,0 ;is it extended key code?
je main$; Yes, go process
main2:
if echo
push ax yif running half-duplex, echo char
call vidout ; to PC display
pop ax ;
endif

.
1

call com_out

E(qon_inp) check if char waiting at comm port

maind:
mov dx,com_lsr ;get receive status
in al,dx H
and al,t ;check receive data ready flag
jz main yno, loop
’
mov dx,com_base ;ydata port
in al,dx H
call vidout ;write it to PC display
jmp main4 ;see if any more waiting
1
; check function keys
main5:
;get second pgte
mov dl,0ffh ;direct input
mov ah,6 ;ask DOS for keyboard input
int 21h H
]
cmp al, 59 ;F1?
jne main6 H
; F1 (Help) message
RTSOFF
mov dx,offset signon ;get signon message
mov ah,0%h ;display string function
int 2th ;let dos do 1t

The Computer Journal #80

References:

Advanced MS-DOS
Ray Duncan
Microsoft Press

ASM and C programs for MS-DOS.
I started out by copying the
TALK.ASM program from this
book.

The Peter Norton PC Programmer's
Bible

Norton, Aitken, Wilton

Microsoft Press

The ‘standard’ refence for beginning

and intermediate PC programmers.

MS-DOS Programmer’s Reference,
Version 5
Microsoft Press

Extensive listing of all the MS-DOS
functions with short sample
routines and all of the structures
used by MS-DOS up to version
5.0.

The_Serial_Port_FAQ
Christian Blum

Look here for routines for detecting
and using the 16550 uart with
fifos for high-speed communica-
tion. Available on the TCY FTP
site.

National Semiconductor Data
Communications Handbook

8250 thru 16550 data sheets. Also
available from their web site as
Adobe Acrobat PDF files. “http://
www.natsemi.com”

Electronic Design
Dave Baldwin

Microprocessor and Digital
design and programming.
Analog circuit design.
PCB layout and more.

Voice(916) 722-3877
Fax (916) 722-7480
BBS (916) 722-5799

4)
DIBs

15

INS8250
po] 1~ 4w vee
D1 2 39 [[RI
D2] 3 38 [/DCD
D3] 4 37 3 /IDSR
D4] 5 36 [ICTS
D5 1 6 35 1 MR
D6 | 7 34 [/OUTH
D7] 8 33 /DIR
RCLK] 9 32 3 /RTS
SIN . 10 31 [/0UT2
souT . 1 30 [INTR
CS0] 12 291 NC
cs1] 13 28 1 A0
1cs2 . 14 27 £ At
/BAUDOUT 1 15 26 A2
XIN . 16 25 1 /ADS
XOUT [17 24 [CSOUT
MR] 18 23 DDIS
WR] 19 22 RD
vss J 20 21 [JRD
Pins:

1-8 DO thru D7, data lines
9 RCLK - Receiver clock
10 SIN - serial input
-1 SOUT - serial out
CS1-3 - chip selects
15 /BAUDOUT- Oscillator
output
16 XIN - crystal input
17 XOUT - crystal output
18-19 WR - write control
20 VSS (gnd)
RD - read control
23 DDIS - driver disable
24 CSOUT - chip select out
25 /ADS - address strobe
26-28 A0-A2 - address lines
29 NC
30 INTR - interrupt output
31 OUT2 - used to enable PC
interrupts
Modem/control outputs
35 MR - Master reset
Modem/control inputs
40 VCC - +5V

16

mov dl,byte ptr com_num ;get comm number
mov ah,06h ;ydisplay char function
int 21h ;let dos do it
mov dx,offset signon2 yget signon message
mov ah,09 ;display string function
int 21h ;let dos do 1t
mov dx,offset tcjmsg ;restore message pointer
mov ah,0 ;display string function
int 21h ;let dos do it
RTSON
3
mainsm:
RTSOFF
mov dx,offset errmsg ;get message offset
mov ah,09 ;display string function
int 21h ;let dos do it
RTSON
jmp main H
main6: cmp al,68 sF10?
je mainx ;yes, exit
jmp main ;if not, ignore and loop back to ‘main’
)
mainx: mov dx,offset exitmsg ;print farewell message
’
;exit procedure
prgext:
; *** set DS in case of error exit
mov ax,cs ;
mov ds,ax H
mov es,ax H
’
push dx ;save message address
call com_dsb ;disable controller and release int vec
pop dx ’
]
mov ah,9 ;let DOS print message
int 21h H
’
mov ax,4c00h ;exit with ret code = 0
int 21h
1]
ret ;far return just in case
int 20h yjust in case

dosterm endp

’
vidout Eroc near ;write char in AL to display
RTSOF
mov dl,al H
mov ah,6 ;use DOS DIRECT console
push bx ssave bx
int 21h ;ycall DOS
RTSON
pop bx
ret
vidout endp
; =
; send char in AL to serial port
com_out proc near
push ax ;save char
mov. dx,com_lsr ;check tbe stat
mov ¢x,2000 ;anti-lockup
com_outi:
in al,dx ;
and al,20h s THRE

;send if ready
oop com_outt ;loop until ready
pop ax ;restore char
ret ;

jnz com_out2

pop ax
mov dx,com_base
out dx,al
com_oxt:
ret
com_out endp

;write char to port

S set up comm port
com_enb proc near

mov dx,com_ier ;interrupt enable register

mov al,0 ; ho interrupts

out dx,al ;

mov dx,com_lcr ;set line control

mov al,83h ;select baud reg, set parms below

The Computer Journal #80

out dx,al ;
mov dx,com_base ;set 9600 baud
mov al,Och y1lo byte
out dx,al H
inc dx ;point to high byte
xor al,al yhigh byte is 0
out dx,al H
; set r/t parms
mov dx,com_lcr H
mov al,03h ;unsel baud reg, no parity, 1 stop, 8 bits
out dx,al H
mov dx,com_mcr ;modem controller DTR, RTS,
mov al,03h ;
out dx,al H
mov dx,com_base ;dummy read of serial port
in al,dx ; to clear flag
mov dx,com_lsr H
in al,dx ;dummy read to clear stat flags
" ret
com_enb endp

5 turn modem control outputs off
com_dsb proc near

mov dx,com_mcr

mov
out
)
ret

al,0
dx,al

com_dsb endp

;turn'off all mcr outputs
3

S gets base pointers and updates I/0 address table

comptr
mov
cmp
jz
nov
cmp
jz
nov
cmp
jz
mnov
cmp
jz
nov
xor

proc near
bx,offset
1,’Y’
comset
bx,offset
al,'2’
comset
bx,offset
al,’'s’
comset
bx,offset
al,’'4’
comset
dx,offset
ax,ax

porti ;off§et to porti
’
port2 goff§et to port2
’
port3 §off§et to port3
L
port4 goff§et to port4
14
errmsg ;EX%T because no COM specified.

ret
;load I/0 address table for selected com port

comset:
nov
or
jz
mov
mov
inc
mov
mov
inc
inc
mov
inc
mnov
inc
nov
inc
mov

ax, [bx]
ax,ax
comptx
word ptr
word ptr
ax

word ptr
word ptr

word ptr
word ptr

word ptr

word ptr

comptx: ret

éomptr

endp

yget base

;check for zero

;zero error exit
com_base,ax H
baudlo,ax ;
;+1 for ier/baudhi
com_ier,ax ;
baudhi,ax ;

?

;+2 for lip
com_lcr,ax ;

;+1 for mer
com_mcr,ax ;

;+#1 for stat
com_lsr,ax ;

;+#1 for mst
com_mst,ax ;

§com port address assignments

porti
éort2
%orta
port4

dw comt
dw com2
dw com3

dw comd

;port address
;port address
;port address

sport address

The Computer Journal #80

More advanced programs

In more complete terminal emulations
and file transfer programs, the serial
code is a small part of the program.
Terminal emulations require direct
video routines because the PC BIOS
routines are inadequate and too slow,
file transfers require a lot of code for
the different protocols, and both require
code to control the modem.

There are several other problems that
need to be dealt with on PC's. You may
need a 'CPU ID' routine to tell you what
kind of machine your program is run-
ning on. Plain PCs and XTs only have
the low order interrupts available
(IRQO0-7) while the AT/386/486/
Pentiums have IRQ's 0 thru 15 avail-
able. If your program needs to be able
to use high order IRQs (9-15), you will
need a slightly different interrupt ser-
vice routine for your receive interrupt.

On a PC, you also need to provide a
'Critical Error Handler' routine so that
disk file problems don't crash your pro-
gram. The 'default’ action of the Critcial
Error Routine (Abort, Fail, Retry?) will
abort your program and return to DOS
if you don't provide a routine that gives
your program control.

You also need to 'intercept' the timer
interrupt to eliminate software timing
loops. Since fixed software timing loops
will run at drastically different rates on
different PC's, using the timer inter-
rupt will allow you to have consistent
timing on different machines.

Another problem is ‘handshaking' on
the serial ports. Handshaking is used
to start and stop the flow of data to
allow the programs to do something
else for a moment like reading or writ-
ing files or scrolling the screen.
DOSTERM shows very simple hard-
ware handshaking (RTSOFF/RTSON).
Some situations require other modem
control lines for handshaking and there
are several different kinds of software
handshaking.

And then there's modems. They have
to be sent 'AT' command strings in the
proper order and you have code to rec-
ognize the responses to know what to
do next. TCJ #79 has David
Goodenough's article on the AT mo-
dem commands.

17

;program uses this table after setup

com_base dw O H

com_ier dw O ;interrupt enable reg
com_lcr dw O ;line control

com_mcr dw O ;ymodem control

com_lsr dw O ;line status reg
com_mst dw 0 ;modem status reg
baudlo dw O ;baud divisor lo
baudhi dw O ;baud divisor hi
tblsiz equ $-com_base

com_num db 0 ;ASCII comm number

signon db 27,°[2J° ;ANSI ‘clear screen’
: db *“DOSTERM using COM$”,

signon2 db *, F10 to exit >",cr,1f,”$"

; Note ‘0’ at end of first line for use by ‘F1' / help function.

errmsg db “Type DOSTERM /x where ‘x’ 1s 1-4 for C M1 thru COM4.”,cr,1f,0
db “Display must be text mode.",cr,1f,0,"$”

exitmsg db cr,1f, 'Exit from DOSTERM terminal emulator.’,cr,lf

tcjmsg db ‘From The Computer Journal, (800) 424-8825’,cr,1f
db ‘Web page: http://www.psyber.com/-tcj/’,cr,1f,’$’

cseg ends

end dosterm

8250 Register Addresses

0 0 1 2 3 4 5 6 0 1
DLAB=0|DLAB=0|DLAB=0 DLAB=1!DLAB=1
RECV | TRANS |interrupt|interrupt| Line | Modem Line | Modem | Divisor | Divisor
register | buffer | holding | Enable iD Control | Control | Status | Status | Latch | Latch
bit register | register | register | register | register | register | register register low hi
o DBO DBO Recv '0' if Word DTR Recv Delta BitO Bit 8
data [Interrupt| Length Data CTS
available| pending | bit0 Ready
1 DB1 DB1 |Transmit| ID bit0 | Word RTS [Overrun| Delta Bit 1 Bit 9
holding Length error DSR
reg bit 1
empty
2 DB2 DB2 Recv | IDbit1 |Number| Out1 Parity | Trailing Bit2 Bit 10
Line of Stop error edge
Status bits Ring
Indicator
3 DB3 DB3 | Modem 0 Parity Out2 |Framing| Delta Bit 3 Bit 11
Status Enable | (PC INT| error DCD
enable)
4 DB4 DB4 0 0 Even [Loopback| Break CTS Bit 4 Bit 12
Parity Interrupt
Select
5 DBS DBS 0 0 Stick o] Transmit| DSR Bit 5 Bit 13
Parity Holding
register
empty
6 DB6 DB6 0 0 Set 0 Transmit| Ring Bit 6 Bit 14
: Break sShift |Indicator
register
empty
7 DB7 DB7 0 0 Divisor 0 6] DCD Bit7 Bit 15
Latch
Access
Bit
(DLAB)

18 The Computer Journal #30

Real Computing

By Rick Rodman

August in the Nation’s Capital: ragweed pollen floats in the
hot, sticky air. Gnats and mosquitos greet them that dare
venture out from air conditioning and HEPA filter. Itis a
time for reflection, for contemplation of possibilities, for
antihistamines, most of all for staying inside.

The Timer

As an old saying goes, when life hands you a lemon, make
applesauce. Many times we look in the wrong place for a
solution to what is really a simple problem. Part of my plans
and thoughts regarding my Real-Time Control System cen-
ter around avoiding utility waste, and one of my pet peeves
is lights being left on - particularly in the basement, but also
in bathrooms. This has led me to try various timer devices,
X-10 modules, timer controllers, and RTCS. But now I’ve
found a much simpler solution.

This is a device available from Marlin P. Jones Associates,
called a “SSAC TS120A-966 Solid State Timer”, which the
catalog says “supplies 115VAC@1A max to the load for 30
min. then power is removed from the load”. What it really
does is, it turns off lights after 30 minutes. (Sorry, no shorter
durations are available.) It does the job perfectly, it’s simple
to connect and it costs only $3.75.

The MPJA catalog is a candy store for experimenters, full of
neat optoelectronics, power supplies, unusual switches, con-
nectors and other exciting stuff. Maybe I'll finally get around
to building the Chaos-Pandemonium Box.

Newton

As the Chinese say, a journey of a thousand miles begins
with a single stumble. Some readers will remember Apple’s
other personal computer, the Newton, with its crummy hand-
writing-recognition technology. The Newton not only cost
$800, but it required a souped-up Macintosh and an expen-
sive development kit even to do the simplest programming -
and, on top of all that, used its own proprietary language, a
very weird object-oriented dialect called NewtonScript. In
management, and in baseball, they say a project can survive
one big mistake, might survive two, but three strikes and
you’re definitely out.

Well, now that monied interests have moved to greener pas-
tures, there remains fertile ground for enjoyable experimen-

The Computer Journal / #80

tation. Used Newtons are available cheaply - sure, they’re
not the latest models, but there haven’t been that many
changes in the line. Better yet, an inexpensive development
tool is available, Steve Weyer’s Newt. Newt, and its com-
panion Slurpee, let you do typing on a PC - or a Sun or
Kaypro or anything at all, really - and compile on a Newton.

Once you realize that a Newton is not suitable for any sig-
nificant data entry, you start thinking that there’s a lot of
stuff that’d be really neat to do. One thing I want to do on it
is for my car, to keep records, perform milage calculations
and remind me about oil changes.

A CD of Newton programs is available from AMUG. While
there appears to be no source code on this CD whatsoever,
there are plenty of programs, mostly shareware, which may
do what you want to do. In fact, one program, called MPG2,
does exactly what I described in the previous paragraph.

Apple Computer recently released a beta of the long-antici-
pated Newton Toolkit for Windows, which actually requires
Windows 95 or NT, and you can download it from their Web
site.

Probably I won’t write much more about Newton topics un-
less our esteemed editor prompts me, but for the TCJ reader
the relevant facts are: ARM RISC processor, 128K to 512K
of internal RAM, 1, 2 or 4MB flash card, graphic display
with stylus input, no disk or keyboard, one RS-232 serial
port.

Java

They say you can lead a gift horse to water, but don’t look
him in the mouth. From an informal survey of books in lo-
cal bookstores, it looks like Java is far and away the most
popular programming language today, outpolling Visual
Basic and C++ combined. So what is it? It’s a compiler/
interpreter, like BASIC-E, CBASIC, and UCSD Pascal. A
web page containing an “applet” causes a browser to request
that “Java Byte Code” (p-code) be sent, where a “Java Vir-
tual Machine” (interpreter) runs it. Nothing particularly
innovative about that, is there? Of course it has the usual
object-oriented stuff like classes and methods that are de
rigeur these days.

While people always rush to say “it’s a lot like C++”, this is

19

not true. It has none of C++’s hard-to-read double colons or
overloaded operators or templates or virtual functions, fea-
tures which nobody in their right mind would use anyway.
Some of its declarations look more like Pascal.

The most important difference between Java and C or Pas-
cal is that Java doesn’t have any pointers. Although point-
ers use a quirky syntax in C and are a minefield for the un-
wary, they are actually the language’s most powerful fea-
ture. Without pointers, we’re reduced to pass-by-reference/
pass-by-value, like we had to do way back in the Fortran days.
In fact, because of Java’s syntax, I think the best alternative
name for it is... Object Ratfor.

Microsoft’s motto is “Good things come to those who waste”,
and they hope to crush Java in their deadly embrace. They
have announced a package called “Visual J++”, which is a
version of Java modified to support what are now called
“Active X Objects” (formerly called “OCXs” and “OLE Cus-
tom Controls”). The name “J++” is supposed to look like
“C++” (repeating the mistake that name makes), but
Microsoft, in their usual narrow vision, didn’t notice that
there is a very popular language called J, a derivative of APL.
Anyway, Visual J++ looks like a package that can be safely
avoided.

In Windows 95 and in NT version 4, the once small, quick
Write word processor, which has been getting bigger over
time, is replaced by a new program called WordPad. From
what I can see, it has nothing that Write didn’t have. But
now, thanks to Microsoft’s “dogfooding”, it uses MFC and
takes ten times as long to load. Efficiency is evidently a
dirty word at Microsoft. I wonder if Bill Gates, the hotshot
programmer who cajoled a full BASIC interpreter into the
Altair’s limited RAM, knows or cares what schlock his min-
ions are producing.

More on Small-C for embedded systems

Frank Wilson writes to say that he has used CUG 6809 Small
C to do work on a Color Computer and on a small 6809 SBC,
and fixed a lot of bugs in it. “The ‘logical not’ code genera-
tion portion screws up the stack. Also, I think the integer
divide had a sign problem. Eventually the darn thing would
self compile on the CoCo, and I also got it to compile on a
68HC11.” He also says: “Maybe using a PC for cross devel-
opment is cheating, but it simplifies things and makes fool-
ing with obsolete processors a low cost option.” I don’t think
it’s cheating, Frank. After all, a PC has to be good for some-
thing, doesn’t it?

He also mentions some cross assemblers which are on CUG’s

CD. Most of these are fairly crude. The ones I like best are
the Frankenstein cross assemblers. When working with as-
sembly code, what can seem very minor syntax variations
can just drive you crazy, especially when it comes to mac-
ros. In the Unix world these things are often standardized,
but in the wild-and-woolly PC world, you never know what
to expect.

20

You’ve seen the movie, now get the OS

The Plan 9 distributed operating system, named for the movie
“Plan 9 from Outer Space”, is available from AT&T in source
code form for $350.

Next time

The RTCS becomes more truly real-time as it meets the TW-
523 X-10 interface and the Watson voice card. Plus, time
and space permitting, the difference between ‘sound’ and
‘voice’ and how to overcome it. Remember, it’s not what
your computer has, but what you can do with it!

For more information

Kettle Pond Computing Facility

BBS or Fax: +1 703 759 1169

E-mail: ricker@erols.com

Mail; 1150 Kettle Pond Lane, Great Falls VA 22066-1614

Marlin P. Jones Associates:

1 800 652 6733 or +1 561 848 8236
Timer, item # 4381-RL, $3.75
P.O. Box 12685, Lake Park FL. 33403-0685

Steve Weyer (Newt Development Environment, etc.)
weyer@netaxs.com

17 Timber Knoll Drive

Washington Crossing PA 18977

AMUG CD Inc. (Totally for Newton CD #6, $24.95)
+1 602 553 0066 or -0144 fax
745 N. Gilbert Road #124-275, Gilbert AZ 85234

AT&T (Plan 9 operating system, $350): +1 908 577 2700
2 Paragon Way, Suite 400
Freehold NJ 07728

4)
LINUX

InfoMagic 5 CD Set........ccc.....

Yggdrasil
Linux man Pages..........cccruuune.
The New Book of Linux

Call for other titles

www.justcomp.com
on the World Wide Web

JUST COMPUTERS!
(800) 800-1648

Fax (707) 586-5606 Int1 (707) 586-5600
P.O. Box 751414, Petaluma, CA 94975-1414
E-mail: sales@justcomp.com
Visa/MC/Int'l Orders Gladly Accepted
For catalog, send e-mail : info@justcomp.com
k Include “help” on a single line in the message.

The Computer Journal / #80

Cheap Hard Disk

Controllers

by Allison Parent

Adapting a PC/ISA card to an 808S.

I needed a hard disk for a 8085 project. The common so-
lution is to use a host interface and controller. However,
boards like the WD1002HDO are becoming scarce. I con-
sidered SCSI but I’d need a SCSI interface to drive a SCSI
drive and I didn’t have either of these either. I opted to
look at a different source for a hard disk controller for my
8085 board. What I was trying to avoid was complex inter-
facing and spending money. The most obvious source was
cheap and plentiful supply of 8bit ISA bus cards. I settled
on the WD1002S-WX2A mostly because I had two that were
good. They would interface to the ST225 and ST251 drives
I have laying around.

The question is, what does it take to talk to it? That was
helped along when a request for information yielded an
article interfacing the slightly smaller WD10025-WX1 to
an SC84 Z180 system. The WD1002 ISA boards are inter-
changeable for the application, the only differences being
board size and surface mount instead of dips. The next
step was creating a 8085 to ISA 8bit adaptor. I had sev-
eral articles that described this in painful terms. I didn’t
need the ISA bus for general use, I just wanted a hard disk
controller. Irejected creating a copy of the ISA bus as being
too complex. What I wanted was the 1002HDO! The prob-
lem was, how do I make the 1002S-WX2A look like a few
simple ports to the CPU?

Going to the drawing board, I pulled out one of the boards
and started looking at it closely with the specifications that
I had available. It was a complete controller. The inter-
face is fully decoded, buffered and it requires a known set
of TTL compatible signals from the ISA bus. Without sche-
matics for the card, it was, for all intents, a black box.
Actually this is ok since we know what the inputs and out-
puts are and what goes on in the middle has been done for
us.

The 1002S-WX2A responds to a standard address for I/0
at 320h to 323h and has Eprom at C8000h to CO9FFFh with
the standard jumpers in place. The control signals were
address, MemRD/, IORD/, IOWR/, DRQ, DACK, IRQ, AEN
and Reset. Right off, I could see that this was a subset of
the ISA bus which cut the interface task down some. Look-
ing at the card in hope of getting some inspiration, I no-

The Computer Journal / #79

ticed that on the edge connector many bus signals did not
even have contacts. An idea, how much of the interface
could be eliminated? First off was the Eprom at C8000h.
The system has enough Eprom of it’s own and clearly this
was excess. This eliminated the MemRD\ and A10 through
A19. This was a start. I then looked at how to put the
board into an eight bit address space.

1A
NAME FUNCTION PIN
DMA XFER ACTIVE ~ REN —] o]
RS EN7-H A2 ——
AB ENG-H A28 ——
A7 ENS-L 24— >e——
A6 ENA-L A5 ——{>o—3_ —
AS EN3-H A28 ——————
A4 EN2-L 27— e
A3 ENI-L A28 ——{>o———
A2 ENB-L A29 — >e—
LOGICA. 1/0 SELECTION

Figure.l Logical I/O sclection.

Looking at the 1/O address space control lines made sev-
eral things obvious. Addresses A0 and Al are register
selects. I guess-timated that somewhere on the board or in
a chip the remaining eight lines enable the board for I/0.
The likely decode is shown in the figure as the logical And
of those eight lines, five are active low and three active
high. We only need 6 of these lines to select an 8 bit ad-
dress. By selecting from the available enables and forcing
the unused two to zero or one as needed we can have the
board appear at many different addresses. I chose to use
the two active high and four active low to assign the board
to COh. The remaining active low line is grounded.

I used one of the active high lines to qualify IO operation
selection off the 8085 IO/M\ line. The 8085 board does
not fully decode IO/M\, RD\ and WR\ to distinct IORD\ or
IOWR\. The same idea could be used in a Z80 system to
decode the IORQ\ and RD\ or WR\. I decided to connect
the HDC reset line to the 8251 DTR\ line as a convenient

21

FuUBIS 'Y TR wmlug

[T I®%yg

iee Z561-v08
NOISIAM

SONTMRIO

Butuesu1buy s|oJjuo]) psppsqul 9egl () JIU-LJNOU
IN3NOJWOO SY HEXM-SZTRRTOM

SFLIL

ATND ALINM
SIEOUNI DI ONJ bWa

JLINM-NOIINGLLIY ONGWWOO
RI-<TMS> ANGNI LIB B
TiA 1803 SIML DL Z1e
URI-SNUBLS

MY - MAUSIOR Yiva

14

ar

12
28

NOILONNA

X3H 20 SSR00Y 3Isud

Y9018 2dddd
O Br ISZIS
93 B SZZIS
93 81 ZiviS

Ep: ol

NS10 RAH Nid 2z

1 i

9 S 99SLS
NSIO CRUH W

11

I

MNSI1A (REH NId ¥E

¥W3IM0d »S10

HOLSISIY NMOd Thd = X

1188 US] ¥ITRILNGD MSI10 (RH

UZXM - SCB10M

The Computer Journal / #79

AT AT A~ A~ e

B
ol
5

I EEEE RS EEEEREEEREE j

BBY 2 23EREBcs manmausn ®

Figure.2 Pinout of the WD1002S-WX2 as component with interface names

o

22

%o e ws e e we s ws we we we ws TOLNes ve ve se v

Header file for HDC

Assemble using DRI ASM or equivelent.
SIM and RIM will be in;erte with DB.

IM EQU 30H ; insert as DB SIM
IM EQU 20H ; insert as DB RIM

PROTO test bed card is Vt100 Printer Buffer Card
These are slightly 8085A, with 4k EPROM, 2k RAM,
3 8251As, 8116 BRG and minimal glue logic.

Mods applied are freeing u? interrupt pins,
Supplying BRG output to all 8251s and adding
local reset generation

Here we keep all the important addresses for
code and whatever.

Memory locations:

ROM EQU 0000 ; ROM starts at 0000h

ROMLN EQU 1000H

; ROM is 4k part

RAM EQU 2000H ; Memory decode is 4k boundary

RAMLN

.

’

INT55 :
INT65 EQU O034H
INT76 EQU O03CH ; Edge
TRAP EQU 024K ;

EQU 0800h ; RAM is 2k part

Magik memory addresses:

Interrupts in hardware of 8085A. The RIM and SIM
instructions can monitor status of and mask interrupts.
EQU 02CH ; Level trigger maskable priority 4
; Level trigger maskable priority 3
trigger maskable priority 2
; non-maskable high priority 1

;IO decodes:

PORTS1A EQU 000 ; data port 8251 device A
CSR51A EQU O010H ; CSR for 8251 device A

PORT51B EQU 020H ; Data port 8251 device B
CSR51B EQU 0O30H ; CSR for 8251 device B

PORT51C EQU 040H ; Data

ort 8251 device C

CSR51C EQU 050h ; CSR for 8251 device C

BAUDB

we os ve ve we

;Name Address =

EQU 060H : base address for BRG

The low 4 bits are baud r
Baud rates below 1200 left off for brevity
All ports use same BRG!

baud rate

B1200R EQU BAUDB+12 ; 16x 1200

B2400R EQU BAUDB+13 ; 16x 2400

B4800R EQU BAUDB+14 ; 16x 4800

B9600R EQU BAUDB+15 : 16x 9600

B1920R EQU BAUDB+16 : 16x 19200

; 8251A CSR Bits.

; Command bits

ENHUNT EQU 100000008 ; Not used, sync mode
IREST EQU 01000000B ; internal reset l=reset
RTSF EQU 001000008 ; 1 sets RTS pin to O
ERES EQU 00010000B ; Error Reset l=reset
SBRK EQU 00001000B ; a 1 Forces TX break
RXE EQU 00000100B : RX enable l=enable
DTRF EQU 00000010B ; 1 sets DTR pin to O
TXEN EQU 00000001B ; TX enable l=enable

NOMCWD EQU

we Wt ve we we wo v we

RTSF+ERES+RXE+DTRF+TXEN ; typical CSR byte

Note CSR51A DTR is used to control hardware reset of the HDC
should it get lost and at power up. CSR51A must have DTRF set
to 1 to clear HDC reset. This will be done in the general INIT
code that sets up board level and branches to HDCinit.

Status bits

DSRS EQU 10000000B ; DSR status

SYNDET EQU 01000000B ; SYNC det, sync mode

FERR EQU 00100000B ; Framing error

ORERR EQU 00010000B ; Overrun error

PERR EQU 00001000B ; Parity error

TXEM EQU 00000100B ; TX empty

RXRDY EQU 00000010B ; RX reg has char if 1

TXRDY EQU 00000001B ; TX reg can accept char if 1

The Computer Journal / #79

and controllable single bit port. I may
add that the DTR\ goes high at power
on reset time so this give me a power
on reset as well. This makes it pos-
sible to do a software reset of the HDC.

Further simplification was found by
choosing to not implement DMA. This
meant ignoring the DRQ line and forc-
ing the DACK line to the false condi-
tion. Data is buffered on the control-
ler card so DMA to keep up with the
disk is not required. Idid hook the IRQ
line to the RSTS.5 line on the 8085 for
later interrupt use because it can also
be polled using the RIM instruction.
This means a polled transfer. Also lines
like AEN had to be forced to false to
prevent spurious deselects. AEN is used
during DMA data transactions to dis-
able the address selection logic as the
DMA controller does this with the
DACK signal. I might add that IORDY
and IOCHK\ on the ISA bus were not
used by the board. For initial testing,
this is easier to debug.

See Figure 2 for the pinout of the
WD1002S-WX2 as component with
interface names

The target system is something I have
a bunch of. They are printer buffer
cards for vt100 terminals. Their basic
design is 8085, 4k of eprom, 2k of ram,
3 8251 usarts with rs232 conversion and
a single baud rate generator. This, with
minor mods, is useful for control sys-
tems on a card that is 4.5 by 5 inches.
I have a simple debug monitor with
download to use on this board. It’s
simple and general enough in design
to use for anything. This was a suit-
able platform to test the interface to the
HDC. Other possibilities could have
be 8748/9 or 8751 single component
CPUs. The obvious use is on a CP/M
system that needs a hard disk interface.

The interface at this point is all me-
chanical and interconnection to the
8085 board. The 8085 board does not
have a external bus but it’s easy enough
to pick up the needed signals directly
off the 8085 and 8251. Some would
complain that I may have exceeded the
fanout of the 8085 but the 3mhz part
has good output drive and fairly relaxed
timing. The board, drive, and control-
ler used the same power supply since

23

it was big enough. Testing has pro-
gressed to the point where the interface
responds and drive seeks were per-
formed by poking data to the various
ports. Programming is the next aspect
of the project and is a later article.

The idea that a PC ISA bus card can
-be applied to systems other than PCs
is not new. In most cases the goal was
to create a complete bus so any card
could be used. While that approach has
value, it is also far more complex. As
another possible application, I looked
at a modem card and again saw a sim-
plified interface that would lend itself
to other applications as a black box
component. My goal was to find a hard
disk interface cheap. By examining a
widely available PC hard disk control-
ler and equating it to a large chip es-
sentially made the board usable for non-
PC applications. Also, there are many
hard disk boards for ISA that appear
the same or very similar. This would
make replacements easier to come by.

Allison J Parent
<allisonp@world.std.com>

24

; HDC I0:

HDCB EQU O0COH ; base address of controller
DATAR EQU HDCB+0; HDC data register bi directional
STATS EQU HDCB+1; HDC status read

: NOTE: A Write to STATS causes internal reset
EBIR EQU HDCB=2; Eight bit input, reads setup sw

; NOTE: A Write to EBIR causes a command attention
DMAIRQ EQU HODCB43; DMA and IRQ enables write only

: DMAIRQ bits
; Even though they may not be used at the bus level they must be
; enabled for status I0 via STATS read.

; Enable DRQ external request and status bit
; Enable IRQ external resquest and status bit

DMAEN EQU 018
RQEN EQU 10B
commands are packet oriented. The host will first write to

EBIR to force the controller to command attention for a command
write when REQ is asserted the host will then write a multibyte
command block via DATAR. Monitoring the status of STATS register
is required for protocol handshake.

I

HDC port read bits for STATS

HDIRQ EQU 001000008 ; interrupt request
DMARQ EQU 00010000B ; DMA request
BUSY EQU 00001000B ; controller is executing a command
CDSTS EQU 00000100B ; Command or data
; Indicates a data transfer <1> or status<0>
10STS EQU 000000108 ; I0 direction
. Indicates direction of transfer read if set, write if clear
REQST EQU 00000001B ; Request
: Controller is ready for data transfer if set
Host buffer

ORG RAM ; at start of RAM
SECBUF DS 512

; Command buffer

; Some commands allow 11 bits for cylinder address, the largest
. value allowed is 1024 (10 bits). Number of heads are limited
: to 8. Sectors per track is 17 invarient. A sector is 512 bytes.

; The largest drive is then 1024*8*17*512=71mb

HDCMDO DB 00 ; Command code
HDCMD1 DB 00 ; bit 5 drive, bits 4-0 head number
HDCMD2 DB 00 ; bits 7-5 MSB of cylinder number
; bits 4-0 sector number
HOCMD3 DB 00 : LSB low 8 bits of cylinder number
HDCMD4 DB 00 : Sector count or interleave (command dependent)
HDCMD5 DB 00 ; bit 7 retry disable, general retry
: bit 6 retry disable, ECC retrys
; bits 2-0 step rate
; 000=3ms, 100=200us, 101=70us

END

The Computer Journal / #79

Simplex Il

Part 3

by Dave Brooks

Simplex-III Machine Instructions

This is the third in a series of articles decribing Sim-
plex-II1, a home-designed CPU. The machine was built in
the late 1970’s, using discrete TTL parts. Simplex-III was
a big-endian machine, with the least-significant byte of a
multi-byte object at the highest address. Data width was 8
bits, with a 64kB address space.

The overall architecture was described in the previous
issue. The programmer-visible registers are shown in Table
1. These registers were implemented in a small bipolar
RAM, the “SPAD”.

Table 1

Name BytesAddress Function

S 2 0..1 Sequence (instruction pointer)
X1 2 2..3 Index / data register

X2 2 4.5 ditto

X3 2 6..7 ditto

A 1.8 8.F Workspace (accumulator)

A typical instruction proceeds by reading the S register
(in 2 bytes) from SPAD, incrementing it by 2, and posting
the result back to SPAD and to the two bytes of the Store
Address register. Two memory-read cycles follow, with the
16-bit address register auto-decrementing each time.

Since all instructions are 2 bytes long, this leaves the
operation-code in the Instruction Register, and the address
offset in the “R” register (a temporary register). The 8 in-
struction bits are broken (in most instructions) into 3 fields
thus (recall that in big-endian notation, bit-0 is the most
significant):

Operation 4 bits [0:3]
Operand register 2 bits [4:5]
Index register 2 bits [6:7]

The first operand is selected by the “operand register”
bits, as A, X1, X2, or X3. The second operand is addressed
in memory, by zero-padding the content of “R” (the address
offset), and adding the content of the “index register” S,
X1, X2, or X3. As before, this addresses the highest (least-
significant) addressed byte of the operand. As the operation
proceeds, both the memory and SPAD address registers auto-
index.

Relative jumps are executed in the same way, by taking
an address forward or back relative to S, and storing that
address in S. The 8-bit displacement is always zero-filled
to 16 bits: an instruction bit determines whether this value
is to be added or subtracted from the S register.

The Computer Journal / #80

For all registers except A, the data length is fixed at 2
bytes. A “length” register can be loaded, to define the length
of A at anything from 1 to 8 bytes. Of course, this value
simply defines the repeat count for operations involving A.
The length value remains set until changed explicitly
changed again.

A typical instruction is:
ADD AXI1DATA

where “A” is the operand, and “X1” the address base.
“DATA” is the address of the second operand, as an offset
from register X1. The effect of this instruction is to add A
(at the currently set length) and DATA, storing the result
in A. The condition bits will also be set.

Instruction-bytes take one of the 4 formats listed in
Table 2. All instructions use Format 1, except for the SET
and BC instructions.

Table 2: Instruction Formats

Format - Function Byte —
0 1t 2 3 4 6 6 7
-Op-code— -Ro- -Rx-
0 Length
1 ITJ K
Condition Dirn.

N -

Formats 2 and 3 are used by the SET instruction. When
1[4]=0, the remaining bits set the effective accumulator
length to 1..8 bytes, giving a working (integer) precision of
8..64 bits. When I[4]=1, I[5] terminates an interrupt, while
1{6:7] are the J and K inputs to a flipflop. This flipflop drives
a “signal” LED as a prompt to the user. SET instructions
ignore the address/data byte. This instruction is not used
often enough to justify the extra logic to count S by only
one byte, and so save the space taken up by the address byte.

Format 4 is used by the Branch Conditional instruc-
tion. If I[7]=0, the address offset is added to S for a forward
branch, while if I[7]=1, the offset is subtracted, for a back-
ward branch. I[4:6] determine the branch condition, as
shown in Table 3.

The machine instructions are listed in Table 4. The JI/
JIL instruction has a side-effect, in that if Ro=X1, X2, or
X3, S is stored in Ro (ie save subroutine link). If Ro=A, the
link is discarded (ie the instruction is a simple jump). Then
or otherwise, q => S (indirect jump). If this instruction is
executed in interrupt level, both S registers are loaded: this
intentional side-effect was used at boot-up to set up the in-
terrupt vector (the interrupt-level S register) as explained
below.

25

Subroutine return is typically done using the “MIR”
(move & increment register) instruction. This takes a 2-byte
register, adds a constant, and stores the result in the same
or another register. A typical subroutine entry/exit sequence
is listed in Table 5, where the “DP” (define pointer) opera-
tor is defined to point 1 byte below the target instruction.

Interrupts

Two copies of the SPAD (and condition-code) registers
-exist, for interrupt and base-level tasks. At reset, the inter-
rupt set are selected. Typically, the initialisation code ends
with a JI instruction, which leaves both register-sets’ “S”
registers pointing at the same instruction. A SET instruc-
tion then changes to base level code, which then over-writes
the instruction at the JI target with a relative jump to the
interrupt routine. This interrupt routine is coded as a loop,
which finishes with a SET <base level>. The following in-
struction will jump back to the head of the interrupt rou-
tine.

Hence an interrupt switches register sets, and immedi-
ately jumps to the head of the interrupt routine. After inter-
rupt processing is done, the SET <base level> is executed,
leaving the interrupt level’s S pointing at its successor in-
struction, ie the jump back to the head of the interrupt rou-
tine. Processing then resumes in the base-level registers.

Next issue

This article has described Simplex-III from a
programmer’s standpoint. The next article will cover the
hardware debugging facilities.

Table 3 Branch-Condition Codes Yable 5 :Typical Subroutine Entry/Exit Sequence
) SUBPTR DP SUBROUTINE //Point below 1st byte of code
14 1516 Condition //Calling routine
0 0 0 Not zero JIL X2,X3,SUBPTR //SUBPTR accessible from X3
001 Zero //Link (X2) points to JIL instr.
01 0 Notnegative //Caller continues
? (1) (1) :etgative SUBROUTINE ngbro;gin: codg: link in X2
ot carry ave if reqd.
101 Camy MIR S,X2,2 /18 = X242, ie return past JIL
110 Always . : .
JIL A,X3,SUBPTR //As above, but link is discarded
1 1 1 Sense switch ON (on front-panel) // (no link is ever stored in A)

Machine instructions
Definitions:

Ro = The operand register (A, X1, X2, X3)
Rx = The index register (S, X1, X2, X3)

‘I = Offset byte from instruction (zero extended to 16 bits)
Q = The effective memory operand address, defined as (rx + I)
q = Content of Q

Where the target of an operation is shown as “z, ¢” this means the C
(condition) bits are affected, as well as loading a result into z.

mm oOOw>» 0mﬂmmawmaog

The instruction assignments are as follows:

Mnemonic

ADD ro+q=>ro,c¢c
ST ro=>q

LD g=>ro,c
XORro XORq=>r0,¢
AND ro AND q=>ro, ¢
LCP roANDg=>c
ADS ro+q=>q,c
SUBro-g=>ro,c¢c
CMPro-gq=>c¢
JINILg => s

CTS q+1=>q,¢
SET

RTL ro+ro=>ro, ¢
BC s+/-l=>s

LDl t=>r10,C
MR ro+l=>1rx,¢

Eunction

//Add memory to register

//Sore register

//ILD sets conditions, unlike the 8086

//Exclusive OR memory to register

/lLogical AND memory to register

//AND, but don't store result

//Add register into store

//Subtract memory from register

//Subtract, but don’t store result

/[Jump indirect/link. See text for

side effects

//Count In store. Always 1-byte operand

//Set values for operand length, interrupt terminate, etc.
//Add to itself, ie shift left

//Branch on conditions. Direction, and

condition set by Ro, Ri bits

/Load immediate, 8-bit zero-extended
//Movefincrement register. Effectively moves Ro+l to Rx

26

The Computer Journal / #80

Adding the 16550 UART
to a 65xx system

by André Fachat

How to add a 16550A UART to a 65xx system

I have stumbled across quite a few 6502 computers that use
the 6551 ACIA for a serial interface. When I used this chip,
I found it rather slow. Since I was doing a Multitasking
operating system for the 6502, the interrupt latency became
too large to reliably catch each and every character from
the device even at 2400 Baud. This was even worse on the
1IMHz my C64, into which I had built an ACIA interface in
a socket under the SID 6581 (sound chip).

I had already heard of the ‘FIFO-serial interface’ for PCs,
and even replaced some 8250°s with 16550A’s myself. So
I decided to replace the ACIA in my C64 with the 16550A
UART.

Bus differences

The 16550A UART chip was designed for a different bus
than the 6502, so there are differences in how to handle the
chip. When I had a first look at the interface, I really
thought, ‘why did they build the chip this way!’.

The Reset line is high active - which places the chip in “run-
ning mode” at power up, and then an explicit signal on the
Reset line only resets the chip. The 65xx series use an ac-
tive low -RESET line, such that even a simple RC-element
with an additional Schmitt-Trigger suffices for a simple
computer.

The Interrupt line is high active also. You can not wire-or
it together with other devices (brain-damaged PC design!)
as in 65xx systems for example. (That would even work if
the passive state would be to leave the line, and not to pull
it down to 0 Volts - but that’s PC design...) And of course,
there is no general clock line, but accesses take place dur-
ing active RD/WR lines, as long as the chip is selected. The
UART has two read (RD and -RD) and write (WR and -
WR) lines, where each triggers a data transfer (i.e. not RD
and -RD, but RD or -RD — which is IMHO quite peculiar,
but I can think of uses for DMA, for example).

These differences in the bus system are, in my opinion, the
reason that many people still use the ACIA 6551, and not
the much more sophisticated UART 16550A. A more so-
phisticated chip involves more sophisticated software. In
contrary to the simple handling of an ACIA, the UART is
indeed more complicated to handle, which also seems a
reason for its low usage. In fact there are many caveats in

The Computer Journal / #80

the UART design that make the thing terrible to program.
See the Serial FAQ at ftp://ftp.phil.uni-sb.de/pub/people/
chris/The_Serial_Port (and the TCJ FTP site) for more in-
formation. But then the UART has the already mentioned
advantage of the FIFO, which makes it attractive.

Schematics

When I was rebuilding my ACIA interface to a UART in-
terface, I had to reuse some sockets and chips, because 1
didn’t really want to build everything from scratch (where
I didn’t have all the parts at home at that time anyway...)
The old Interface card was a daugtherboard to be put be-
tween the socket for the C64 SID chip and the SID itself.
An additional connector gave three signals: A9 to divide
the SID address space in half (although the SID has only
28 registers, they are mirrored in a 1kByte block of I/O space
in the C64), -E to enable the ACIA at all and -IRQ to sig-
nal the CPU. Isoldered A9 and -IRQ to appropriate places
on the C64 motherboard, while -E goes to a switch.

With the ACIA and the use of a dual 2-to-4 decoder
74LS139, 1 was able to do the whole thing. It even made
the ACIA disappear from the memory map, when it was
disabled. This didn’t work with the UART, because I needed
more circuitry from the decoder to manage the RD/WR
handling. Well, one could surely think of something cleaner,
but I wanted it quick...

Here’s how it works in the C64

All pins from the SID are connected from the C64 SID socket
to the SID socket on the daughterboard, except -CS (pin 8).
This line is or’ed with the additional A9, to remove the SID
from the upper half of its memory window, and then given
to the SID. The first half of the ‘139 then gives the condi-
tion that Phi2 is high, -CS is active, and A9 is high. This
output is then fed into the -E pin of the second decoder.
The enable line (from the external enable switch) switches
between the two used and the two not used outputs of the
decoder. R/-W as the lower decoder address line then
switches between the RD and the WR line. These outputs
are or’ed with the inverted Phi2, and fed to the UART.

This arrangements has two purposes: The two decoder stages
that have Phi2 in the first decoder give a delay to the begin-
ning of the access. This is needed, as the C64 switches from
video chip memory access to CPU memory access with the
phases of Phi2. So the address lines need some time to

27

adjust. (The VIA 6522, for example, expects the address
lines valid at the beginning of Phi2, and doesn’t work with
the C64 that way. It needs the starting transition of Phi2 to
be delayed.) The ORing with the inverted Phi2 then stops
the access by invalidating the RD/WR lines when Phi2 be-
comes inactive, This also is a reason for Phi2 being used
as CS line.

‘Another example

1 have also built a Dual UART card with two 16550A for
my selfbuilt 6502 computer, and there I used a similar ap-
proach. I took a 74LS138, a 3-to-8 decoder. The select
line for the I/O area goes to the decoder as enable line (-
El), as well as Phi2 (E3). -E2 is not used and set low. A0
is connected to R/-W of the system, and Al is another ad-
dress line. A2 is also set low. The outputs Q0-Q3 are then
connected to the two chips.

-Q0 -> UART1 -WR
-Q1 -> UART1 -RD
-Q2 -> UART2 -WR
-Q3 -> UART2 -RD

The Software

Now that you have the UART in your computer, you have
to have some software to use it. I have not yet rewritten the
C64 OS to use the UART as serial interface (which I had
done to use the ACIA before). Maybe I have this ready,
when this issue of TCJ comes out, then you find it on my
homepage http://www.tu-chemnitz.de/~fachat/. But I have
already written a generic UART device driver for my
selfbuilt 6502 Operating System, OS/A65.

The code shown here is part of that driver, together with a
simple C64 binding. It actually follows the suggestions
given in the “Serial FAQ”. I have one problem, though.
Because the interrupt generation is somehow buggy in the
UART, the FAQ suggests to start the transmitter from out-
side the IRQ routine. Well, in my OS I don’t have any device
code outside the IRQ routine (that is called when data is
being sent). But then, as the 6502 cannot directly decide
where an IRQ came from, the interrupt drivers are (almost)
all called when an IRQ occurs, with “higher priority” first.
So the serial driver, being the one with the highest priority,
is called very often, even if it is not the source of the IRQ
itself. But that ensures that the IRQ routine is called and
so I can check there, if I have to start transmission manu-
ally.

The listed program echos characters it receives from the
serial line back to the serial line. It also takes characters
" typed on the C64 and sends them to the serial line. A part
of the screen is used as character buffer, so that you can see
something, when the program receives characters.

I have written a SLIP (Serial Line Internet Protocol) pro-
gram for my selfwritten OS, that uses an UART. On my 1
MHz C64 with builtin UART it replies to Internet PING
messages without packet loss at 9600 baud. Using the same
program with an ACIA, even at 2400 baud, is completely
useless due to lost characters.

28

Conclusion

The 16550A might not be the chip of choice for simple
applications, where a high data rate is not necessary. But if
you don’t want to use the serial line as a terminal line only,
but want to do some serious data transfer, better take an
UART. Here you see a way to use the UART in 6502 based
systems and how to program it.

André Fachat (a.fachat@physik.tu-chemnitz.de)

(c) 1996-1997 Andre Fachat
fachat@physik.tu-chemnitz.de

This is part of a UART 16550A serial line driver
for the 0S/A65 operating system.

The 16550 is not really an easy chip, but it has
16 byte input and output FIFQ buffers, which
allows much higher ‘interrupt latencies.

routines defined here are:
devini- initializes 16550A hardware

devirg- must be called in the interrupt
routine

setspeed - sets the speed of the transmission
(yr = speed index in the divisor
table)

txon/txoff - switches transmitting on/off

rxon/rxoff - switches receiving on/off

routines needed are:

GETC - read byte from application in IRQ
(via software FIFO)
PUTC - write byte to application from IRQ

(via software FIFQ)
/STRCMD- get status of software FIFO

/* UART register definitions */

ffdefine RXTX 0 /* DLAB=0 */

ffdefine IER 1 /* DLAB=0 */

fidefine DLL /* divisor low, DLAB=1 */
ffdefine DLH /* divisor high, DLAB=1 */
fidefine IIR /* 1rq 1D Reg, read only */
fidefine FCR /* FIFO Control, write only */
ftdefine LCR Line Ctrl Reg */

jidefine MCR /* Modem Ctrl} Reg */
f#fdefine LSR /* Line Status Reg */
ffdefine MSR /* Modem Status Reg */
f#define SCR /* *scratchpad’. unused */

/* UART is the (memory mapped) address of the UART
* The E_* codes are distinct error codes. E_OK is
* 0, the others are not.

* “status™ is a local variable */

® ok ok ob ok oF oF % ok oF b b b ok o b ok oF F ¥ ok % oF F b % O * % F

SNOoOYT B W N— O
S~
*

/* status: Bit 0 = 1= handshake enabled
*

1 : 1= no ACIA found
* 5 : 1= set RTS hi
* 6 : 1= we are transmitting (DC_SW_TX)
:/ 7 . 1= we are receiving (DC_SW_RX)
ftdefine DC_SH_RX %10000000
fldefine DC_SW_TX %01000000

/* 16550 divisor values for BAUD rates 7, 50, 75,
* 110, 134.%, 150, 300, 600, 1200, 1800, 2400,
* 3600, 4800, 7200, 9600, 19200

*/
divisor .word -1, 2304, 1536, 1047, 857, 768, 384,
.word 192, 96, 64, 48, 32, 24, 16, 12, 6

[FHExN KKK IRIKIKAIAK A hkkhkhkkkkhkrkhkkhhkhkhkrhkhkhkhkhdrhhkx

init UART

This routine is according to the Serial FAQ by
Chris Blum, Release 18. The FAQ is posted
regularly to comp.sys.ibm.pc.hardware.comm and
comp.os.msdos.programmer and can be obtained by
ftp at ftp://ftp.phil.uni-sb.de/pub/pecple/chris/

* ook % o A A %

The Computer Journal / #80

ZECXVH
91vL
6ETISTIVL

(sdnnd yaL1m GOI @sn 40) 00SIVL

2ESIVL
V0GS91

931
SOI
vJI
€01
2J1
101

29

*++LLdde suoLqo8uuod AL ddns usmod Lensn a3yl
SJ- ‘g ulLd 3dooxd *39%00S QIS MAuU 03 $9) wout Yybnouyi po31d2uUU0d sutd QIS LLV

opPPA SSAIGT o¥I- 3- 6v
||Jl o¥ 02 eyoe4 ° o] ~ _
aNo jeyoed "V 9661 (2) ST T0h
o —
2 L-00
Zg1 ¥se-
L €91
—1 a20- - 13539-
51920 W OA S143sy <
usa -
N GE Doss sout i Teis iV
x A
oxLi= NOAE T7]Lnos s21 O [N
2v 2v
92 41 1t
v iv
oz oq_Vnrw or|MS Wiz ot ot
ov OV ceeeeeeeeenes ov
8z 6 6
jAjueradeM ON u_u
Siy OA S1y- aNg GND
L vt Tt ze 1eyde4 Vv AQ HJ4OoMide jeulbLJdo | LV 33 v
- JIOA LYY
$12rg €1 V&ﬁ O b Ut Oz s2
991 %=
- - M-/y
sav- = ya s il
¥ b 201 o
an-
TT
ot et NG 9kt
EXR:]
n:w q xnﬁ ZHW 2698° 1 6 v ” ME . M , -
- 100X to 13- eo 13- $3- -
LT ay- S T 6 T 8 8
8 S
urd 6 — e ot ¥o1 va1
291
_ €91 -
51| NI 3
2so- 3k
rl ~
104 —
6 S
1S90 ryidal 512+yd m
nopne
] anzy Aney LY =
095 © u.ﬂvlﬁm. . o 201 | 8
T u:n._w E
101 l_l 9 m.
d s It [elv IS 38%20s QIS ¥9D ais 8
AOT+ AoT- aNe [T O
24 jst m
901

* The_Serial_Port

* F % ¥

de

(These routines get called with the device number
in the x register. As this driver supports one

UART only, x is always O -
1da #0

vini

sta status

that may change) */

;check if there's something like an UART at all

tdy

1da #

sta
1da
and
bne
1da
sta
lda
and
cmp
bne
sty

UART+MCR
$10
UART+MCR
UART+MSR
#370

UART+MCR
UART+MSR

UART+MCR

check if it has a scratchpad register
if not then it's plain 8250

ldy
1da
sta
cmp
bne
Isr
sta

UART+SCR
#%10101010
UART+SCR
UART+SCR
dev8250

% % ok ok b o oF ob b oF o b ok b b OF b % ok b ¥ * % F F

The routine is nasty due to several reasons: The
UART doesn't periodically generate interrupts,
when the transmitter is empty, as the ACIA does.
So it is possible to be able to send (i.e. put
characters in software send FIFOQ) but the
interrupt driven driver doesn’t know about it.
Therefore, the Serial FAQ suggests to start the
transmission manually when data is written to
the drivers internal buffers. In this 0S the
buffers (software FIFOs) are totally independent
FIFOs (Streams) written to and read with PUTC
and GETC. To avoid lockups, I therefore check if
1 can start sending every time the interrupt
routine is called, even if the interrupt source
is not the UART itself.

The FAQ suggests checking if data is to be sent
after all UART interrupt sources have been
handled. But “Start transmission by simply
calling the tx interrupt handler after you've
written to the tx fifo [software-FIFQ] of the
program...” (These are things you can do with

UART+SCR
UART+SCR

cmp

bne dev8250

sty UART+SCR
; now cheﬁk th? 16xxx

da

sta UART+FCR

1da UART+IIR

1dy #0

sty UART+FCR

asl

bcc dev16450

asl

bcc dev16550
else dev16550A; currently only this one
; is supported

versions

; ok, we detected a 16550A, i.e.

; with working FIFQ
1da #%10000000
sta UART+LCR
1dx #14*2 :
1da divisor,x
sta UART+DLL
lda divisor+l,x
sta UART+DLH
1da #%00000011 :
sta UART+LCR

ida #7 ; no FIFQ enable and

; clear FIFOs,
sta UART+FCR ; trigger at 1 byte
1da #0
sta UART+IER ; polied mode (so far)
sta UART+MCR : reset DTR, RTS

a chip

9600 BAUD

8N1

clc
rts

nodev ; no UART at all
dev8250 ; no Scratchpad, no FIFO
dev16450 : scratchpad, no FIFQ
dev16550 : FIFO bug
1da status
ora #2
sta
1da
sec
rts

status
#E_NOTIMP

/ AEREERKKKEARKEATRKKRK KK IAKIAKRRKAk T A AKX KRR IN AN ARk Khkk

* UART interrupt routine

other for every device in this 0S
If an interrupt source has been removed. then
E_OK is returned, E_NOIRQ otherwise. So this

The interrupt routines are called one after each

* % F ok o Ok F ¥ #

30

routine even gets called, when lower level
interrupts occur. This is due to the single level
interrupt structure of the 6502 (not counting the
NMI. which is not really of use in this 0S)

DOS.... ts,ts,ts) doesn’'t work here. Instead we
check it in every interrupt call. */
devirg
. (
}da UART+IIR ; UART IIR
sr
bcc intr ; ok, found IRQ
irgend tda #E_NOIRQ ; no irq source found
jmp irge ; not this one
intr
and #%00000011 ; interrupt mask - makes
tay ; four possible IRQs
bne int_tx
; modem status interrupt
tda UART+MSR ; de-locked by reading the MSR
jmp checkint ; do it, even if this IRQ is
. not enabled...
int_tx ;—m——
dey
bne int_rx
tx_loop ; transmitter empty interrupt
jsr tx2 . write data bytes to UART
: FIFO
jmp checkint
int_rx ;—————=
dey
bne int_status
rx_loop ; receiver interrupt
jsr rx2 . get one char and save
Tda UART+LSR
Isr
bes rx_loop ; still data in UART FIFQ?
Jjmp checkint
int_status ;————
da UART+LSR ; 1ine status interrupt,
; de-locked by reading MSR
checkint ; still another IRQ pending?
1da UART+IIR
Isr
bcc intr ; irg still pending
jsr nobyt ; check if we are still
; allowed to rx (i.e. stream
; has not been closed from
; reader)
irgok 1da #E_OK ; irg source removed
irge pha ; we get here no matter if
; UART IRQ or not
Tda UART+LSR ; check if we are allowed to
; start sending manually
and #340 ; (THRE = LSR bit 6)
beq nbyt : no then end
jsr tx2 ; otherwise fill FIFO
jsr nobyt . check if we are still
; allowed to receive (this
. ensures to check even if no
; traffic)
nbyt
pla
rts
. Receive a single byte
rx2

.
Tda UART+RXTX: load data byte

The Computer Journal / #80

bit status ; are we receiving?

bpl rx2end ; no, then end

jsr PUTC ; and save in software FIFOQ
bcc rx2end : no error -> end

cmp #E_SLWM ; stream below low water mark?
bne test ; this happens most and is

caught by nobyt anyway
rx2end rts

: check stream (software-FIFQ) status

&nobyt
bit status . are we receiving?
bpl rx2end : no -> end
jsr STRCMD ; get state of stream
bcc rx2end ; ok -> end
test
cmp #E_NUL : stream has been closed from
; reader?
bne tstwater
jmp rxoff ; yes, then shut receiver off
tstwater
cmp #E_SEMPTY; stream is empty?
beq wl ; ok, ensure that RTS is low
tax
1da status ; we want RTS hi?
and #1
bne wh ; yes, then high
txa
cmp #E_SFULL : stream full
beq wh ; then RTS high
cmp #E_SHWM ; stream above high water
; mark?
bne twl ; no then branch
wh 1dx #0
jmp rtsoff
twl cmp #E_SLWM ; stream below low water mark?
bne rx2end : no then end
wl 1dx #0 ; otherwise RTS low
jmp rtson
)
; Fill transmitter FIFO
tx2 A
bit status ; are we transmitting?
bvc txrt ; reading IR should clear
; this line
1da UART+MSR ; are CTS and DSR ok?
and #%00110000
cmp #%00110000 ; cts or dsr inactive
bne txrt ; yes then end
1dy #15 ; number of byte
txloop
jsr GETC
bcs test2
sta UART+RXTX : send new data byte
dey
bne txloop ; fi11 up FIFO
bcc txrt
test2 cmp #E_EOF ; we got a stream End-Of-File?
bne txrt
jmp txoff : y$;, then shut transmitter
H
txrt rgs

/***

* gsupport routines */

dtroff 1da UART+MCR
and #%11111110
sta UART+MCR
1da #0
sta UART+IER
rts

dtron 1da UART+MCR
ora #%00000001
sta UART+MCR
1da #3
sta UART+IER
rts

rtsoff 1da UART+MCR
and #%11111101
sta UART+MCR
1da status,x
ora #%00100000
sta status.x
rts

rtson 1da UART+MCR
ora #%00000010

The Computer Journal / #80

sta UART+MCR
1da status,x
and #%11011111
sta status,x
rts

] FRRRKKXKRKRKXKKKKKIXRRRX AR A AR XRRKIK AR *TARA KR IAAh A X **K

*

*
* This is rather 0S specific, so maybe it’s not
* necessary here. One thing to mention is, that
* rxoff and txoff just reset their bit in the status
* byte. rxoff then sets RTS high (rtsoff). After
* that, both check if transmitter or receiver are on.
* [f both are shut off, then DTR is set high
* (dtroff).
*
* 1f the transmitter or receiver are enabled, both
* set DTR low (dtron). The receiver also sets CTS
* low (ctslo).
*/
rxon jsr rtson
jsr dtron
1da #DC_SW_RX
bne o2a
txon Jjsr dtron
Tda #DC_SN_TX
o2a ora status
sta status
bne ok
rxoff 1da status
and #0C_SW_RX
beq devoff
jsr rtsoff
: signal eof to software FIFQ here
lda status
and #255-DC_SH_RX
sta status

control handling

jmp checkdtr

txoff l1da status

. S

and #DC_SW_TX
beq devoff
ignal close to software FIFO here
1da status
and #255-DC_SN_TX
sta status,x

checkdtr and #DC_SH_TX+DC_SW_RX

act

set

ok
dev
dev

ono

bne active
jsr dtroff
ive jmp ok

speed tya
and #%00001111
asl
tax
beq ok
1da UART+LCR
ora #380
sta UART+LCR
1da divisor.x
sta UART+DLL
1da divisor+l,x
sta UART+DLH
1da UART+LCR
and #$71
sta UART+LCR

1da #E_0OK
.byt $2¢

on 1da #E£_DON

yt $2¢

of f lda #E DOFF
.byt s2c
1da J#FE_NOTIMP
cmp #1

rts

timp

31

The European Beat

by Helmut Jungkunz

Z-BASE - A way to use ZCPR’s
TCAP for dBASE 1I

When CP/M is mentioned, one often
hears or reads the term “standard pro-
gram”. The most popular so-called
standard programs then were WordStar,
Multiplan and dBASE. I always liked
dBASE, for it offered even blunt idiots
like me an easy interface to screen-ori-
ented programming, even if in very ru-
dimentary form.

What annoyed me, was the fact, that
dBASE had to be installed for each and
every terminal. When ZCPR came
about, I first thought:

Wow - finally no more installations of
terminals! Well, that goes for ZCPR -
aware programs and tools only. When
you use dBASE or any other non-ZCPR-
program, you would still have to install
the program first.

One of the nice things in UNIX and in
ZCPR is the use of a so-called TCAP
(Terminal CAPabilities) file, that, once
loaded, will provide a given screen en-
vironment, usable by all applications for
that system.

dBASE by itself does not offer any pos-
sibilities to directly make use of the
ZCPR TCAP, but it has a powerful,
built-in interface to PEEK and POKE
memory addresses and thus to execute
machine code!

* The theory of all that may be taken from
the program in BOX 1.

“CALL <memory variable>” will
branch processing to the address speci-
fied in a SET CALL TO <address>
command. The address must be deci-
mal. When you reach the called ad-
dress, the register pair H-L points to the
first byte of the memory variable; this

32

BOX [1 1 “DBASPOKE.INF".

dBASE 11 2.38

Technical Support Note # 25

Copyright 1983, Ashton-Tate, A1l Rights Reserved
General Distribution

Assembly code interface information 28 Mar 1983

for dBASE II 2.3B running on CP/M 2.2 .
The syntax for PEEK, POKE, and CALL is as follows:

PEEK(<address>)

POKE <address>, <byte 1list>
SET CALL TO <address>

CALL <memory variable>

POKE stores
computer’s memory.
of a specified byte in the computer’s memory.
decimal addresses and values.

a list of values into a specified location in the
PEEK is a numeric function that returns the value
Both PEEK and POKE use

Examples:

STORE PEEK(128) TO value
STORE 128 TO location
? PEEK(location), PEEK(Tocation+l)

* Subroutine..: LEADZERO.LIB

* Description.: Replaces leading blanks with leading zeroes.
SET CALL TO 42000

POKE 42000, 34, 37,164, 70, 35,126,254, 32

POKE 42008, 194, 33,164, 54, 48, 5,194, 20

POKE 42016, 164, 42, 37,164,201

STORE * 123" T0 number

CALL number

? number

; LEADZERO.ASM Replacing leading blanks with leading zeroes.
: Written by Luis A. Castro, Ashton-Tate, 1982.

ORG 42000 ;Load in dBASE free area.
SHLD SAVEHL :Save HL registers.
MOV B.M ;Store length of string to counter.
LOOP: INX H ;:Skip to next character
MOV AM ;Fetch character
CPI ‘e ;Is it a space?
JINZ DONE ;Yes, done.
MVI M,’0° ;Replace space with zero
DCR B ;Decrement counter
JNZ LOOP ;Repeat until done
DONE: k?%o SAVEHL ;Restore HL registers.
SAVEHL DS 2
* Program.: HEX-DEC.CMD
* Author..: Luis A. Castro.
* Date....: 9/14/82, 7/12/83.
* Notice..: Copyright 1982, ASHTON-TATE.
* Notes...: To convert an assembled program’s HEX file
* into a dBASE POKE sequence. This program works only
* with HEX dumps that look like the following:
*
* :10A410002225A446237EFE20C221A4363005C21484
* :05A42000A42A25A4C90D7
* : 0000000000

The Computer Journal / #80

* The file this program generates is a .LIB file and can
* be added to a dBASE command file using an editor
: or word-processor.

* You will need to create HEX-DEC.DBF with the structure:
* HDUMMY1 C 001

* HLENGTH C 002

* HADDRESS C 004

* HDUMMY2 C 002

* H11 C 002

* H12 c 002

* H13 C 002

¥ H14 C 002

* H15 C 002

* H16 C 002

* H17 C 002

* H18 C 002

* H19 C 002

* H20 C 002

* H21 C 002

* H22 C 002

* H23 C 002

* H24 C 002

* H25 C 002

* H26 C 002

*

SET TALK OFF

STORE *123456789ABCDEF™ TO hexvalues

* Macros to convert hex values to decimal values.

STORE [@($(Hlength,1,1),hexvalues)*16 +;
@($(Hlength,2,1).hexvalues)] TO Mhexlen

STORE [@($(Haddress,1,1),hexvalues)*4096 +;
@($(Haddress,2.1).hexvalues)*256 + @($(Haddress,3,1) ,hexvalues)*16 +;
g(S(Haddress.4.l).hexvalues)] T0 Mhexaddr

ERASE
; “CONVERTING A HEX DUMP TG DECIMAL”

ACCEPT “Enter hex file..... ” T0 filename

IF filename=" “

RETURN

ENDIF

IF @(“.”,filename) > 0

EIg?E $(filename,1,8(“.”,filename)-1) TO filename
STORE !(filename)+” . HEX” TO infile

STORE !(filename)+”.LIB” TO outfile

QCCEPT “Enter description..” TO notes

? “Copying structure to HEX-DEC....”
USE Hex-dec

COPY STRUCTURE TO Hex-dec.$$$
USE Hex-dec.$$$

? “Appending from &infile......
APPEND FROM &infile SOF

GO TOP

*

* Generate the POKE sequence.

ERASE

SET ALTERNATE TO &outfile

SET ALTERNATE ON

? [* Subroutine..: l+outfile

? [* Description.:]+notes

STORE &Mhexaddr TO address

? [SET CALL TO]ESTR{add;ess§5)
*

?
11 12 13 14 15]

DO WHILE .NOT. EOF

STORE &Mhexlen TO linelen

STORE &Mhexaddr TO address

IF linelen & O

STORE = “ TO decimals

STORE “11” TO item

DO WHILE VAL(item)-10 <= linelen

STORE decimals+”,”+STR(@($(H&item,1,1) hexvalues)*16;

+ @($(H&item,2,1),hexvalues),3) TO decimals

STORE STR(VAL(item)+1,2) TO item

ENDDO

ENB??KE J+STR(address,5)+[, J+$(decimals,3,LEN(decimals)-2)
SKIP

ENDDO while .not. eof

SET ALTERNATE OFF

CLEAR

DELETE FILE Hex-dec.$$$
QUIT

* EOF hex-dec.cmd

4 5 6 7 8 9 101+

The Computer Journal / #80

is the length byte for character strings.
The <memory variable> must be a
string and may not be lengthened while
you are putting data into it. Execute a
machine language return to get back to
dBASE. dBASE will handle saving the
registers. All machine memory from
A400H up to the bottom of the CP/M
BDOS is available, but will be over-
written when a SORT is done. It is
recommended that a MOVCPM utility
be used to create protected memory ar-
eas for assembly routines above CP/M.

To convert an assembled program’s
hex file into a dBASE POKE sequence
you may want to run the dBASE pro-
gram HEX-DEC.CMD provided for you
at the end of this documentation.

This was released some time ago over
the internet and tells the story. I now
sat down and took a look at the ZCPR
environment. Each TCAP sits in
memory, once ZCPR has started. Con-
sidering the latest TCAP version, the
address of the graphic characters used
by the terminals (GOELD) is at a de-
fined offset of 13 from the start of
“TCAP”. “TCAP” is found at the page
just above the Z3 environment address
ENV.

To find these addresses, issue from
NZCOM or Z3PLUS the command
ENV. This macro will peek the corre-
sponding page of Z3ENV for your sys-
tem. Take down the hexadecimal ad-
dress at the left top! That is all you
need (plus the tool ZDDTZ.COM or a
Hex-Calculator). In my case, I have the
address F580 for ENV. I start ZDDTZ
and enter:

DDTZ v2.5 by C.B. Falconer.
CPU=780
-hF580 (the - is the prompt, the
rest is entered from the
keyboard)
F580 62848 (This is what we
want - the decimal form of
the address!)

Now we take down 62848 on a piece of
paper. We use ZDE to edit our dBASE
“TCAP.CMD” and enter this decimal
address as the value for ENV. Every-
thing else is calculated automatically.

Now bring up dBASE and issue the
command:

DO TCAP

33

The screen will be erased and after a
while, GOELD will appear at the top
of your Monitor, followed by a colon
“.»_ This is called by a fake “Strike-
any-key-when-ready” command —>

accept to dummy

You may leave this out, but for debug-
. ging purposes, I think it is a great help.
Once you strike your “ANY” key (okay,
bad joke), the graphical characters from
your extended TCAP will be displayed.

If you have an idea, how the HEX-TO-
DEC routine shown here can be used
to immediately return the ENV address
in decimal to dBASE, I would certainly
appreciate this.

Just to be complete, I also include a
dummy extended TCAP, that can be
used on all non-graphical terminals to
use standard characters like “+”,”-”."1”
and so on.

This is an example, of how a Televideo
terminal with no graphical characters
may be turned into a “Graphical Ter-
minal”. This is a legal hoax that works
nicely to convince ZCPR, your termi-
nal can do it.- And as a matter of fact,
it does.

Regards from Germany

Helmut Jungkunz
helmut jungkunz@metronet.de

34

BOX [2] TCAP.CMD

*Routine TCAP.CMD by Helmut Jungkunz, ZNODE 51, Germany

erase
store 0 to count

*hex TO dec CONVERSION routine NEEDED
* Here I enter the address of my Z3ENV in decimal manually
* to get this address, issue the command ENV from NZCOM or Z3PLUS

store 62848 to ENV

store (ENV+128) to ENV
store (ENV+13) to GOELD

? “GOELD =",GOELD

*the nect line is a “wait
accept to dummy

store GOELD+17 to count

for any key pressed ...

store count+l6+peek(count) to count

store chr(peek(count)) to

*UL is UﬁEer Left of a box

? count,
store (count+l) to count
store chr(peek(count)) to

UL

UR

*UR is UBEer Right of a box

? count,
store (count+l) to count
store chr(peek(count)) to

*L L is Lower Left of a box

? count,LL
store (count+l) to count
store chr(peek(count)) to

LL

LR

*LR is Lower Right of a box

? count, LR

store (count+l) to count

store chr{peek(count)) to
*HL is Horizontal Line of
? count ,HL

store (count+l) to count

store chr(peek(count)) to
*VYL is Vertical Line of a
? count,VL

store (count+l) to count

store chr(peek(count)) to
*FB is the character Full
? count,FB

store (count+l) to count

store chr(peek(count)) to
*HB is the character Half
? count,HB

store (count+l) to count

store chr(peek(count)) to

HL
a box

VL0
box

F8
Block

HB
Block

TI

*TI is the character Top Intersection

? count,TI
store (count+l) to count
store chr(peek(count)) to

Bl

*Bl is the character Bottom Intersection

? count, Bl
store (count+l) to count

store chr(peek(count)) to MI
*M] is the character Middlie Intersection

? count ,MI
store (count+l) to count

store chr(peek(count)) to RI
*R] is the character Right Intersection

? count,RI
store (count+l) to count
store chr(peek(count)) to
*LI is the character Left
? count,LI
store (count+l) to count

enddo
end of TCAP.CMD
BOX [3] DUMBTERM.Z80

L1
Intersection

; L3TCAP file:
ESC EQu 27

»
.
’
’
»
>

TNAME :
GOFF:

DB
DB

‘TVIDUMMY
GOELD-TNAME

13TCAP.780
; Escape character

The first character in the terminal name must not be a space.
;s Z3TCAP.TCP library purposes only, the name terminates with a space

For

; and must be unique in the first eight characters.

‘ ; Name of terminal (13 chars)
; Graphics offset from Z3TCAP start

+ Terminal configuration bytes B14 and B15 are defined and bits

; assigned as follows.

The remaining bits are not currently assigned.
: Set these bits according to your terminal configuration.

The Computer Journal / #80

B14 b7: Z3TCAP Type.... 0 = Standard TCAP 1 = Extended TCAP
bit: 76543210

Bl4: DB 100000008 ; Configuration byte B14

H B15 b0: Standout....... 0 = Half-Intensity 1 = Reverse Video
: B15 bl: Power Up Delay. 0 = None 1 = Ten-second delay
: B15 b2: No Auto Wrap... 0 = Auto Wrap 1 = No Auto Wrap
H B15 b3: No Auto Scroll. 0 = Auto Scroll 1 = No Auto Scroll
: B15 b4: ANSI........... 0 = ASCII 1 = ANSI

H bit: 76543210

"B15: DB 00000000B ; Configuration byte B15

; Single character arrow keys or WordStar diamond

DB ‘K*-40H ; Cursor up

DB ‘V'-40H ; Cursor down

DB ‘L"-40H ; Cursor right

DB ‘H*-40H ; Cursor left

; Delays (in ms) after sending terminal control

;strings

DB 0 ; CL delay

DB 0 s CM delay

DB 0 ;: CE delay

; Strings start here

CL: DB ‘Z"-40H.,0 ; Home cursor and clear screen

CM: DB ESC, =%+ %+ °,0 ; Cursor motion macro

CE: DB ESC,°T’,0 ; Erase from cursor to end-of-line

SO: DB ESC,"G4°,0 ; Start standout mode

SE: DB ESC,’GO",0 ; End standout mode

TI: DB ESC,’GO",0 ; Terminal initialization

TE: DB ESC,’'GD".0 ; Terminal deinitialization

; Extensions to standard Z3TCAP

LD: DB ESC.'R’,0 : Delete line at cursor position

LI: DB ESC,°E’,0 ; Insert line at cursor position

CD: DB ESC,°Y",0 ; Erase from cursor to end-of-screen

; The attribute string contains the four command characters to set
the following four attributes for this terminal in the following

; order: Normal, Blink, Reverse, Underscore

SA: DB 0 : Set screen attributes macro
AT: DB 0 ; Attribute string

RC: DB ESC.'?’,0 : Read current cursor position
RL: DB O ; Read line until cursor

: Graphics TCAP area
GOELD: DB O ; Graphics On/0ff delay in ms
; Graphics strings

G0: DB * *,"H’-40H,0
GE: DB ° ‘.°H’-40H.0

Graphics mode On
Graphics mode Off

ve we ve we

Cho: DB ESC,’.0°,0 Cursor Off
CDE: DB ESC,'.3’.0 Cursor On

: Graphics characters

éuLc: DB o+’ ; Upper left corner

GURC: DB+’
GLLC: DB+’
GLRC: DB ‘+’
GHL: 1] : S
GVL: 1] S
GFB: DB **’
GHB: DB ‘4

e
GLI: DB+
GIS: DB 4+
GRTI: DB *+°
GLTI: DB “+°
: Fill remaining space with zeros

"REPT 628-(S-TNAME)

Upper right corner
Lower left corner
Lower right corner
Horizontal line
Vertical line

Full block

Hashed block

Upper intersect
Lower intersect
Mid intersect
Right intersect
Left intersect

we e we @4 e we W ve we we W we

END
: End of Z3TCAP

The Computer Journal / #80

35

Small System Support

by Ronald W. Anderson

C Class Notes 8, Address Program in C

This time let’s digest a typical short program in C and see
just how it works. The program reads a data file of names
and addresses (and other information if desired) and prints
each record that contains a string that matches the string
given on the command line. It ignores case. If I give it the
command:

address jones

It will print all the records containing “jones” or “Jones” or
any combination of caps and lower case. It doesn’t just
print the line but the whole record. The data file is simply
a text file that can be edited with any editor. Records are
entered just as they will appear in the printout:

* John Jones 1234 5th st. Elko NV 78901
Phone: (000) 111-2222 *

The program will list any record that has a match to the
search string on the command line. For example it would
match the above record to “elk” or “nv”. Let’s look at the
program and then go over it line by line. This program has
been left in the style of ANSI C with function prototypes
and function arguments defined in this new style.

/* address program in C - uses data file of name
and addresses with records segarated by lines
with asterisk in the first column. Matches a
search string and prints each record that
contains the string. */

#include <stdio.h>

#define TRUE 1

#define FALSE 0

/1 function prototypes
int read _record(void);
int match(char *matchbuf);
int ch;
char recbuf[600];

FILE *infile;

void main(int argc,char **argv) {

if (argc ==1)

puts(“address needs a string to match”);
if ((infile = fopen(“c:\\addr.dat”,”r"”))== NULL)

puts(“can’t open address data file\n”);
exit(1);

{ha next line is the main loop of the program.
It calls the two functions in turn, uses the
results to produce an output and loops until
the end of the data file

while (read_record()) if (match(argv([1]))

T~
— S —

éuts(recbuf);

36

%close(infile);
exit(0);

// this function gets a record in recbuf and
/1 returns TRUE until end of file is detected at
// which point it returns FALSE.
int read_record(void) {
int k=0;
while ((ch =getc(infile)) I= ‘*’)

if (ch == EOF) return FALSE;
recbuf[k++]=ch;

recbuf[k] =0;
return TRUE;

/ this function searches recbuf for a match to the
| search string and returns TRUE if it finds one,
/ otherwise returns FALSE

int match(char *matchbuf)

int m=0,r=0;

while (recbuf[r])

. Sed

while (tolower(recbuf[r++]) ==

tolower(matchbufm++]))
if ématchbuf[m] == 0x00) return TRUE;
m =0;

}
return FALSE;

You might think this is a very short program for what it
does. It makes rather full use of the shortcuts available in
C. It combines asignment statements and function calls. It
uses function call returned values in tests.

You might note that the data file path and name are hard
coded into the program, so you must use the filename
addr.dat and it must be in your c:\ directory (i.e. the root
directory). You can hard code a different name or path if
you wish.

Note that we put the main() function first. This is more in
line with standard C programming practice. The gurus all
say that main is really an outline of your program calling
out the various functions in order, and if you are to do top
down programming, you should start there. You can block
out the called functions to be empty, i.e.:

void function() { }

Now you can write the functions one at a time and test them,
perhaps with a lot of print statements in the function or in
main() to test the operation of the function.

While all this sounds good on paper, speaking from expe-

The Computer Journal / #80

rience, I can say that main() by the time I am done, doesn’t
resemble main() that I started with! As I look at each
function I get ideas for improvements and main() changes
accordingly. That doesn’t, however, make the approach
wrong or invalid. It is always a good idea to block out a
program before working on the details. Advocates of top
down programming would simply say that I don’t spend
enough time in the planning stage. I start coding too soon.
.I would counter that I could spend a very long time plan-
ning and my code still would require debug.

I sometimes violate this rule if I know that one function in
the program is going to be particularly difficult. I might try
to do that one first, doing only a dummy main program that
calls it and allows testing of it. Later when the hardest part
has been debugged, I'll go back and finish main and then
fill in the other, hopefully easier functions.

Well, this has not been a complete item by item discussion
of C, but over the last year and a quarter, we have covered
the main features of the C programming language. Hope-
fully at least, this has been done in a way that will allow you
to continue with a good textbook on C to learn more.

Whether you have a very small C, one of the dialects of the
original Small C, or something more complete like Borland
Turbo C or Microsoft Quick C, you will find the differences
small. The Small C versions don’t have float or double data
types, but you can do all of the things we’ve done in this
series. That is, you can manipulate files and do integer
arithmetic quite nicely. If you are running a 6809 with
FLEX you might be able to find a copy of Windrush C by
James McCosh. It has float and double data types and it is
not super complicated or large out of line with the resources
of a 6809. If you find a later version it will include my
scientific function package that I wrote for it and gave to
James. If you get an earlier version and want the “scipack”
package, let me know and I’ll send it to you. I have new and
improved sci function algorithms done since then.

If you are an old time reader of ‘68’ Micro Journal you
might remember a product called “Duggers Growing C”. 1
was asked to review it way back when, and I found bugs by
the dozen. I had access to the source code (in 6809 assem-
bler) of the runtime library and was able to fix a number of
bugs, but I couldn’t review the thing and give it a “thumbs
up”, nor could I fix bugs in the compiler proper, since I
didn’t have source code. Iam not talking about bugs in that
the compiler didn’t meet the then standard (actually one
didn’t exist then), but just plain operational errors, particu-
larly in the math package.

At the time I offered indirectly to fix it for Duggers. Italked
to them and they said “Well, we wrote, compiled and ran a
few programs and they ran fine”. I guess if that was the
extent of their testing, I don’t wonder why it was buggy.
They did some dumb things, for example testing a 16 bit
integer for zero by summing the two 8 bit parts of it. Any
value whose upper and lower bytes were 2’s complements,
like for example, 00000001 11111111 (byte values decimal
1 and -1 in signed arithmetic) when added would produce
8 zeros plus a carry and the carry was ignored so this
number and a lot of others tested true for zero! Of course the
bytes should have been ORed so that a 1 in any position

The Computer Journal / #80

would show up in the result and test non zero. I spent a
month of evenings fixing numerous such errors and sent
Duggers my result. I received a phone call thanking me for
my efforts on the runtime package. Though I offered to
work on the compiler proper for a copy of the source code,
my offer was turned down and the ad was dropped from
‘68°.

If you have questions, feel free to write. I am still by no
means an expert in C, but I can find answers to most
questions and would be happy to do so. In the past few
weeks I’ve helped three other programmers with answers to
questions about C. I think I am past the beginner stage at
last.

Assembler

Let’s look this time at some of the more interesting instruc-
tions in the 6809 set. For starters how about the MUL
instruction. It multiplies the value in the A accumulator by
the value in the B accumulator yielding the product in the
D accumulator.

LDA #5
LDB #6
MUL

The D accumulator now contains: 0000000000011110
This is of course the value 30. If you know that the result
is not going to be larger than 8 bits you can consider the
answer to be in the B accumulator, i.e. just the 00011110
part of the above. The problem with a multiply is that the
result can be so large as to require twice as many bits to
represent it.

The beauty of this instruction is that it takes 12 clock cycles
and is much faster than the add and shift method that would
have to be used otherwise to multiply two 8 bit integers. It
is left to the user / programmer how to interpret the result.
Assuming unsigned bytes works best or at least is easiest to
keep track of. You can assume integer multiply in which
case the binary point is at the right end of the result, or you
can assume fractional multiply in which case the result
must be shifted left one place and the binary point is at the
left end of the result. You can handle signed arithmetic by
negating negative numbers and keeping track of the sign,
re-negating the result if the sign is calculated to be nega-
tive. It is a pain for all but the simplest uses, but it can be
useful. For example a compiler writer might use it to
calculate the offset to the location of a byte or integer in a
two dimensional array as the starting location plus the
product of the two array subscripts (times 2 for an array of
16 bit integers). It is my belief that some of the less
common instructions in the 6809 set were included for
writers of compilers to use.

I might mention here that the 68000 instruction set includes
both an integer and a fractional multiply called IMUL and
FMUL to handle some of the above details for you. It also
includes a DIV instruction which the 6809 does not.

I thought it strange when I first saw the 6809 instruction set

that it didn’t have more instructions that would work on the
D accumulator. It has complement and shift instructions

37

for A and B but not for D. For your thought I offer some
subroutines to do some of these instructions.

COMD COMA
COoMB
RTS

CcoMB
COMA

ADDD #1
RTS
ASLD EQU *

NEGD

;sThis is a way of giving a subroutine
; two names

LSLD ASLB
ROLA
RTS
ASRA
RORB
RTS
LSRA
RORB
RTS

We probably haven’t discussed the difference between Arith-
metic shifts and Logical shifts. There is no difference when
the shift is to the left. A Zero is shifted into the low order
bit:

LDA #1

ASLA

or LSLA
result: 00000010

ASRD

LSRD

The 1 has shifted one place to the left.

Shifting to the right is different, however. The reason is
signed arithmetic. When a register contains a signed value,
the leftmost bit is the sign bit. When a negative number is
divided by 2 the sign bit must be preserved, thus:

1111110 (-2)
shifted right one place (ASR)
11111111 (-1)

-The value has correctly been divided by 2. If we didn’t
preserve the sign bit as in the LSR instruction, the shifted
value would be:

01111141 or 127

If we are dealing with signed numbers we need to use the
ASR instruction but if we are dealing with something like
a bit mask we probably want to use the LSR. For example,
here is a code fragment to find the highest bit that isa 1 in
a byte value:

FIND CLRA LOOP CMPB #0
BEQ DONE2
LSRB
INCA
BRA LOOP
DONE2 DECA
- RTS
A call to FIND would be:
LDB VALUE
BSR FIND

On return, A contains the number of the highest order bit
that was a 1. Bits are counted right to left, the lowest order
bit being bit 0 and the highest being bit 7. The algorithm
is to shift the value until the remaining value is zero, when

38

all the bits have been shifted away, counting the shifts. If
the VALUE happened to be 0 we get -1 back indicating an
error. If the value is 1 A is incremented to 1 for the single
required shift but the DECA instruction makes it 0 again
which is correct because the low order bit (bit 0) was the
only one on. Though this might look like a contrived
example, I assure you I have done things like this in the
past.

Saving and Restoring Registers

There is a trap you can get into very easily using assembler.
Suppose you are going along in some code and have values
in both accumulators but you want to go to a subroutine and
do something else. If the subroutine needs to use the
accumulators to do its thing, the values in A and B that you
had in your main program will be lost.

Most of us write subroutines so they save the values from
whichever registers they are going to use, and restore these
values on exit. The easiest way to do this is to use the
system stack and the PSHS and PULS instructions.
Subroutine:

NAME PSHS A,B

instructions using A and B
PULS A,B
RTS
Of course if you do this you can’t return values in A or B

(or D). You must return results in a variable somewhere or
perhaps in the X or Y registers.

The use of PSHS and PULS instructions requires some great
care. Remember that the return address for the subroutine
is on the stack. If you Push more bytes than you pull or vice
versa, the return address will be corrupted and the program
will go off into the wild blue and lock up or start executing
garbage!

These are some of the hardest bugs to find and some of the
easiest to introduce in a program. Not saving and restoring
the contents of a register that needs to be saved is also a
hard bug to find in an assembler program.

Had you not guessed, PSHS and PULS instructions are
followed by a register list. You can save one register or all
of them. The order of the list is unimportant. The proces-
sor handles the order so they don’t get scrambled by the
process.

Of course with multiple instructions you can reverse the
order and effectively swap the contents of two registers:

PSHS A
PSHS B

This will SWAP the contents of A and B. You must PULL
the last thing you PUSHed first. If you DON’T want to
swap you must do it this way:

The Computer Journal / #80

If you just want to swap two registers the EXG instruction
can do that:

EXG A,B
EXG X,Y

If you want to copy the contents of A to B or X to Y you use
the TFR instruction:

TFR X,Y
TFR A,B

This leaves the contents of the first (source) register intact
and copies it into the second (destination) register. Note
that for either of these instructions the registers to be ex-
changed or those involved in the TFR must be the same
size. Youcant EXG A,X. The assembler will flag this error
for you.

We ought to discuss the logical AND and OR instructions.
First let me say that the operations such as ADD, SUB,
AND, OR, EOR etc. all leave the results in the register that
is being used.

LDA #5

ANDA #$FE

five = 00000101
$FE = 11111110
RESULT = 00000100

The AND result is left in A after the execution. The effect
of an AND is to turn individual bits OFF. Since our
“MASK?” had the low order bit off, the result would be to
make the contents of A an EVEN number because we have
turned the 1’s bit off.

LDA #156

ORA #$10

15 = 00001111
$10 = 00010000
RESULT= 00011111

The effect of the “MASK” in the case of the OR is to turn
individual bits ON.

The AND instruction can be used to see if the contents of
A or B have a particular bit ON:

MASK EQU $04 00000100
LDA VALUE ANDA MASK BNE ...

Whatever VALUE happens to be, the branch will be taken
if bit 2 is a 1 and will not be taken if bit 2 is a 0.

There is a test that doesn’t destroy the contents of the
accumulator. It is the BIT instruction

Suppose in the above example VALUE = 7 After the AND
instruction A would contain 4 because we have ANDed
away the other bits.

LDA VALUE BITA MASK BNE ...

The Computér Journal / #80

The result is the same as in the previous case where we used
AND, EXCEPT that A now still contains the original value
of 7.

The effect of the BIT insruction is to AND the MASK or
whatever with the contents of A but NOT to write the result
into A. We could do multiple tests in a sequence without
having to reload A with VALUE again:

LDA VALUE BITA #$80 BNE SEVEN BITA #$40 BNE SIX ...

We could test each bit with a different value to find the
highest order bit that is on, as in one of the examples above.
This obviously is the hard way to test all 8 bits of a byte
value, but if we only wanted to test two or three, it might be
fast and short.

There is a similarity in the situation of the SUB and The
CMP instructions. We could test for A containing the value
17 a couple of different ways

LDA VALUE
SUBA #17
BEQ ...

(assume 17)

We would branch if the value is 17 because the subtract
would make the contents of A zero. The condition code
register zero bit would be set. The BEQ instruction looks
for the zero bit to decide whether the EQUAL condition is
true.

LDA VALUE
CMPA #17
BEQ ...

This does exactly the same thing. The CMP instruction
subtracts the immediate value and the BEQ test checks the
zero bit of the CCR, which is set as the result of the CMP.
The difference is that the value in A remains 17. That is,
the result of the subtraction is not written back into A.

General

I’ve recently been given an almost antique 286/12 computer
to play with. A friend of mine wanted to upgrade his
computer that was considered quite a machine in 1988
when he bought it. It has a 360K 5.25 inch floppy drive, a
1.44 Mbyte 3.5", 640K of memory, a 145 watt power sup-
ply, a 40 Mbyte hard drive (IDE), and a reasonably nice AT
style keyboard. It also had an EGA display board.

We decided after a good look that about the only parts of
any value for an upgrade would be the keyboard and the
1.44 Mbyte floppy drive. He decided he might as well buy
a new one and told me to keep it with an eye toward giving
it to someone or some organization who might be able to use
it. Yes, things surely do get obsolete quickly. The sad part
is that the computer runs fine. With the addition of an old
VGA board, and by plugging my monitor and mouse onto
it, I checked it all out and loaded some software on it. It
works flawlessly except that it is about 15 times slower than
my present 486 system. If I needed only a fairly simple word
processor system, I could have one very inexpensively with
a computer like this as a start. Actually it would work
admirably for what I am doing right now, using it as a

39

simple word processor to write this column. If I wanted
more storage, I would probably only add a larger hard drive
and some more memory. The motherboard has four simm
sockets so it looks as though I could add up to 4 Mbytes,
though there is no documentation and it might be a problem
to get it all running again.

My present system is most likely 2 to 3 times slower than
the new pentium systems hitting the market currently. I've
~ always been happy with a computer until I’ve used a faster
one for a short while. The old 6809 system used to be great
fun to use. Now when I compile a program and have to wait
five minutes, I writhe in the pain of boredom. I can compile
the equivalent program on my latest computer in a few
seconds. ’

When I started using 68000 based systems with real MFM
hard drives, I was in heaven. Those 5 or 10 minute compiles
could be done in 2 or 3 minutes. Hard disk data transfer,
while vastly faster than with floppy drives, was still a bit
slow.

The 286 based system I bought (12 MHz) seemed to be a
whiz until I got my hands on a 386-40. Then came the 486
system. Each time, as I said, a few days use of the newer and
faster system made the old one seem like it had been filled
with molasses! Actually, my 486SLC50/2 is built on a
motherboard that will accept and run a 66/2 as well. The
clock frequency is changed by moving one jumper. Just for
fun I decided to try running the processor (clearly marked
as a 50 MHz one) at 66. It worked fine. Someone at work
reminded me that the 66 version of this board has a heat
sink on the processor chip. I switched back to 50 tempo-
rarily and went and bought a heat sink with fan for $10 at
the local computer store. I put it on top of the processor
with some heat sink compound between, and anchored it in
place at the corners with a little hot glue dribbled from
corners to circuit board. I discovered that the hot glue
didn’t bond very well to the board and later added some
clear silicone to hold the assembly together. I might ex-
plain that the heat sink was intended for a 486DX and thus
didn’t just clip in place. I noted and appreciated the speed
increase of 4/3.

The best data transfer rate I saw on the 68000 system was
about 90 Kbytes per second from its MFM hard drive. My
present system hits 1,250,000 bytes per second. Loading an
editor or a compiler is VERY fast. Now the computer does
something and waits for its next instruction from me rather
than the other way around.

40

Though the new computers are great and I wouldn’t trade
mine for something slower when I use it for program devel-
opment or word processing using Windows TruType fonts
and printing in graphics mode, there are numerous reasons
why I would rather play with the old 6809 or 68000 system
when I don’t need the speed. The biggest reason is the
simplicity of the old computers (and the software that runs
on them). I have found that I can run versions of that old
software on the new machine and it runs like lightning. For
example my screen editor that I wrote years ago for the 6809
system is now running in a new and improved version
(translated from PL/9 to C) with more features on the PC.
WordStar for Windows takes a full minute to fire up. It
must for some reason completely obscure to me, have to
read 100 disk files before it can run. My old PAT editor
loads as fast as I can type the command and get my finger
on and off of the ENTER key. The .exe file is right around
50K of code. I suspect with Windows and WordStar run-
ning, I am using most of the 4 megs of RAM I have on the
PC system.

You’ve seen over the past several issues how programming
in Assembler is done. It looks (and is) rather easy for a
small program, say a utility program. When programs get
really large, one appreciates a faster computer. Our com-
pany has been using the 6809 for about 12 or 13 years now.
We never found it inadequate to perform its intended pur-
pose UNTIL our programs grew to the point that we were
crowding the memory limit. Then it began to be a headache
to try to squeeze code into the 48K or so that we could use
for program code (We need some stack space and the I/O
uses a bit of the memory address range).

Our reason for moving on was NOT the lack of capability
of the small processor, but the lack of availability of suffi-
cient memory for some of our larger applications. We began
using multiple computers in some of our products, etc. The
use of one of the new computers has given us a huge
memory space, and a vast improvement in performance
which we didn’t know we needed until we had it. By that I
mean that all the extra computing power has brought to
mind things that we can do in our computer that we wouldn’t
have thought of earlier.

I guess the bottom line is pretty much the philosophy of The
Computer Journal. If you need to do something complex
use the latest 80X86 based 100 MHz computer. If you want
to learn something about how computers work, go get an
old microcomputer and dig in!

The Computer Journal / #80

The TCJ Store

Regular lItems

‘Back Issues See page 44

All Back Issues of TCJ are available.

TCJ Reference Cards $3.00 + $1 S+H
So far, all we have is the Z80 Instruction Set card from
Issue #77. These are on heavier stock than the one sent
with the issue.

The next two items are Group Purchase ltems. TCJ
doesn't have the resources to stock these for you, so we
haveto collect a minimum number of orders before we can
provide these.

*GIDE kits $73
Tilmann Reh's GIDE board was featuredgft several is-
sues of TCJ. It is a ‘Generic’ IDE boarq®o\the Z80 that

plugs into the Z80 socket (you plug e 280 Back into the
GIDE board). This is still an e @ gnigrs kit. Sample

code and docs includin om TCJ are pro-
vided, but you have t% Own BIOS routines.
cPM CD-ROM $25 + $4 S+H
This is reek CP/M CD-ROM (normally
$39.95+% 19,000 files from Jay Sage, David
McGilone, (First Osborna Group), the Beehive BBS,

the Enterprise BBS, ftp.demon.uk, and the SimTel20
CPM collection from the Internet.

Special ltems

We currently have two each of Tilmann Reh’s CPU280
boards and the IDE boards that go with them. The
CPU280 was featured as the Centerfold in Issue #77 and
the IDE interface was in Issue #56. These are bare boards
and are not for the faint of heart. They are expensive and
the parts are hard to get. But they're fast.

*CPU280 bare board $150
Comes with docs and utility disk.

*IDE bare board $65
Comes with docs.

*CPU280 & IDE together $200

CP/M Kaypro Catalog

TCJ has taken over Chuck Stafford's Kaypro business. Here's
our current catalog.

Upgrades
Advent TurboRom

K4-83 ...ttt $35.00

K10-83 ..o ceeeceerter e ceereecseneesnnenes $35.00

KX-84ooovviiriiiiiinniiicninniccicsneenees $35.00

MicroCornucopia Roms

PrO 8. $35.00

884 MaX ...cooreiicreenreieeccnieeee e nnes $35.00

884 MaX (LO) ..cccoveeemirrcentrieecnteieeaene $35.00

Character ROMccccoovcvvnnrecnienieerennns $35.00
Add-ons

HandyMan.......ccccecreinennnienereeeseenenes $75.00
Disk Drives

Dual Density TEAC FD-55BV $15.00

Quad Density TEAC FD-55FR $15.00

Pail et $25.00

ST-225 20 MByte MFM HD............cccoeueuenee. ??
Disk Controllers

WD-1002-05 HDOccoviviriiirinnniine $75.00
Tech Data

Kaypro Technical Manualc........ $25.00

Microcornucopia Schematics with
Theory of Operation

K-Al/4 83ocoeirereereeenesveesieaeneaneen $15.00
K-10/83...eieicciiinrne e $15.00
All-B4 ..ot $15.00
ANY tWO oo $25.00
All three....ccveeeercniniecreenieneecreseasenanes $30.00
Software
Advent Harddisk Formatter $25.00
TurboRom Applications Patches $10.00
TurboRom Developers Diskstte............ $10.00
Kaypro 10/83 Tinker Kitc.c.cocviernene. $10.00
Kaypro 2,4/84 Tinker Kit..........cccccoeevnee $10.00
Kaypro CP/M 2.2H Autoload set
8 diskettes for K-10/84 $40.00
ther
Keyboardsccceevevereemeenennnneninisnienine $30.00
Video - CRT and board........cccceouniimnnne $40.00
Kaypro Carrying bags.......c.cccoeveresincnnes $75.00
aypr c

K-ll, K-2, K-4, K-10 available in various condition.

TCJ can accept credit card orders by phone, fax, or mail
or you can place an order by sending a check to:

The Computer Journal

PO Box 3900, Citrus Heights

CA 95611-3900

Phone: 800-424-8825 or 916-722-4970
Fax 916-722-7480 / BBS 916-722-5799

Include your shipping address with your check, and your
Internet address if you have one. For more info, contact
TCJ via E-mail at tcj@psyber.com

* In Europe and particularly Germany, contact Tilmann
Reh for a current price and shipping. His email addressiis:
“TILMANN.REH@HRZ.uni-siegen.d400.de”

His postal address is:

Tilmann Reh

Autometer GmbH

Kaenerbergstrasse 4

57076 Siegen (optional “-Weidenau™)
GERMANY

The Computer Journal / #80

41

SUPPORT GROUPS FOR THE CLASSICS

TCJ STAFF CONTACTS

TCJ Editor: Dave Baldwin, (916)722-4970, FAX (916)722-
7480 or TCJ BBS (916) 722-5799 (use “computer”, “journal”,
pswd “subscriber” as log on), Email: tcj@psyber.com,.

TCJ Adviser: Bill D. Kibler, PO Box 535, Lincoln, CA 95648,
(916)645-1670, GEnie: B.Kibler, CompuServe: 71563,2243,
E-mail: kibler @psyber.com.

32Bit Support: Rick Rodman, 1150 Kettle Pond Lane, Great
Falls, VA 22066-1614. Real Computing BBS or Fax: +1-703-
759-1169. E-mail: ricker@erols.com

Kaypro Support: Charles Stafford, on the road somewhere.
Email: CIS 73664,2470 (73664.2470 @compuserve.com). TCJ
has taken over Chuck's Kaypro parts and upgrade business.

$-100 Support: Herb Johnson, 59 Main Blvd. Ewing, NJ 08618
(609)771-1503. Also sells used S-100 boards and systems. E-
mail: hjohnson @pluto.njcc.com.

6800/6809 Support: Ronald Anderson, 3540 Sturbridge Ct.,
Ann Arbor, MI 48105.

Z-System Support: Jay Sage,1435 Centre St. Newton Centre,
MA 02159-2469, (617)965-3552, BBS: (617)965-7046; E-
mail: Sage@1l.mit.edu.

REGULAR CONTRIBUTORS

‘Brad Rodriguez, Box 77, McMaster Univ., 1280 Main St.
West, Hamilton, ONT, L8S 1C0, Canada, E-mail:
bj@headwaters.com..

Frank Sergeant, 809 W. San Antonio St., San Marcos, TX
78666, E-mail: pygmy @pobox.com.

Tilmann Reh, Germany, E-mail: tilmann.reh @hrz.uni-
siegen.d400.de. Has many programs for CP/M+ and is active
with Z180/280 ECB bus/Modular/Embedded computers.
Microcontrollers (8051).

Helmut Jungkunz, Munich, Germany, ZNODE #51, 8N1, 300-
14.4,+49.89.961 45 75. Email: helmut.jungkunz@metronet.de.

USER GROUPS

Connecticut CP/M Users Group, contact Stephen Griswold,
PO Box 74, Canton CT 06019-0074, BBS: (203)665-1100.

~ Sponsors Z-fests.

SMUG, Sacramento Microcomputer Users Group, has disbanded
after all these years.

CAPDUG: The Capital Area Public Domain Users Group, News-
letter $20, Al Siegel Associates, Inc., PO Box 34667, Betherda
MD 20827. BBS (301) 292-7955.

NOVAOUG: The Northern Virginia Osborne Users Group,
Newsletter $12, Robert L. Crities, 7512 Fairwood Lane, Falls
Church, VA 22046. Info (703) 534-1186, BBS use
CAPDUG’s.

42

The Windsor Bulletin Board Users’ Group: England, Contact
Rodney Hannis, 34 Falmouth Road, Reading, RG2 8QR, or
Mark Minting, 94 Undley Common, Lakenheath, Brandon,
Suffolk, IP27 9BZ, Phone 0842-860469 (also sells NZCOM/
Z3PLUS).

NATGUG, the National TRS-80 Users Group, Roger Storrs,
QOakfield Lodge, Ram Hill, Coalpit Heath, Bristol, BS17 2TY,
UK. Tel: +44 (0)1454 772920.

L.IS.T.: Long Island Sinclair and Timex support group, contact
Harvey Rait, 5 Peri Lane, Valley Stream, NY 11581.

ADAM-Link User’s Group, Salt Lake City, Utah, BBS:
(801)484-5114. Supporting Coleco ADAM machines, with
Newsletter/BBS.

Adam International Media, Adam’s House, 1829-1 County
Road 130, Pearland, TX 77581-5040. Contact Terry Fowler
for information. Web: "HTTP:// WWW Flash.Net/~coleco”

AUGER, Emerald Coast ADAM Users Group, PO Box 4934,
Fort Walton Beach FL 32549-4934, (904)244-1516. Contact
Norman J. Deere, treasurer and editor for pricing and newslet-
ter information.

MOAUG, Metro Orlando Adam Users Group, Contact James
Poulin, 1146 Manatee Dr. Rockledge FL 32955, (407)631-
0958.

Metro Toronto Adam Group, Box 165, 260 Adelaide St. E.,
Toronto, ONT M5A INO, Canada, (416)424-1352.

Omaha ADAM Users Club, Contact Norman R. Castro, 809
W. 33rd Ave. Bellevue NE 68005, (402)291-4405. Suppose
to be oldest ADAM group.

Vancouver Island Senior ADAMphiles, ADVISA newsletter
by David Cobley, 17-885 Berwick Rd. Qualicum Beach, B.C,,
Canada V9K IN7, (604)752-1984. dcobley@gb.island.net

Northern Illiana ADAMS User’s Group, 9389 Bay Colony
Dr. #3E, Des Plaines IL 60016, (708)296-0675.

San Diego OS-9 Users Group, Contact Warren Hrach (619)221-
8246, BBS: (619)224-4878.

The San Diego Computer Society (SDCS) is abroad spectrum
organization that covers interests in diverse areas of software
and hardware. It is an umbrella organization to various Spe-
cial Interest Groups (SIGs). Voice information recordings are
available at 619-549-3787.

The Dina-SIG part of SDCS is primarily for Z-80 based com-
puters from Altair to Zorba. The SIG sponsored BBS - the
Elephant’s Graveyard (619-571-0402) - is open to all callers
who are interested in Z-80 and CP/M related machines and
software. Contact Don Maslin, head of the Dina-SIG and the
sysop of the BBS at 619-454-7392. Email: donm@cts.com.

ACCESS, PO Box 1354, Sacramento, CA 95812, Contact Bob
Drews (916)423-1573. Meets first Thurdays at SMUD 59Th
St. (ed. bldg.).

The Computer Journal / #80

Forth Interest Group, PO Box 2154, Oakland CA 94621 510-
89-FORTH. International support of the Forth language, local
chapters.

The Pacific Northwest Heath Users Group, contact Jim Moore,
1554 - 16th Avenue East, Seattle, WA 98112-2807. Email:
be483 @scn.org.

The SNO-KING Kaypro User Group, contact Donald Ander-
son, 13227 2nd Ave South, Burien, WA 98168-2637.

SeaFOG (Seattle FOG User’s Group, Formerly Osborne Users
Group) PO Box 12214, Seattle, WA 98102-0214.

OTHER PUBLICATIONS

The Z-Letter - has ceased publication.

The Analytical Engine, by the Computer History Association of
California, 4159-C El Camino Way, Palo Alto, CA 94306-
4010. Home page: http://www.chac.org/chac/ E-mail:
engine@chac.org

Z-100 LifeLine, Steven W. Vagts, 2409 Riddick Rd. Elizabeth
City, NC 27909, (919)338-8302. Publication for Z-100 (an S-
100 machine).

The Staunch 8/89’er, Kirk L. Thompson editor, PO Box 548,
West Branch IA 52358, (319)643-7136. $15/yr(US) publica-
tion for H-8/89s.

The SEBHC Journal, Leonard Geisler, 895 Starwick Dr., Ann
Arbor MI 48105, (313)662-0750. Magazine of the Society of
Eight-Bit Heath computerists, H-8 and H-89 support.

Sanyo PC Hackers Newsletter, Victor R. Frank editor, 12450
Skyline Blvd. Woodside, CA 94062-4541, (415)851-7031.
Support for orphaned Sanyo computers and software.

the world of 68' micros, by FARNA Systems, PO Box 321,
Warner Robins, GA 31099-0321. E-mail: dsrtfox @delphi.com.
New magazine for support of old CoCo’s and other 68xx(x)
systems.

Amstrad PCW SIG, newsletter by Al Warsh, 6889 Crest Av-
enue, Riverside, CA 92503-1162. $9 for 6 bi-monthly news-
letters on Amstrad CP/M machines.

Historically Brewed, A publication of the Historical Computer
Society. Bimonthly at $18 a year. HCS, 2962 Park Street #1,
Jacksonville, FL. 32205. Editor David Greelish. Computer
History and more.

IQLR (International QL Report), contact Bob Dyl, 15 Kilburn
Ct. Newport, RI 02840. Subscription is $20 per year.
Email:IQLR @nccnet.com.

QL Hacker’s Journal (QHJ), Timothy Swenson, 5615 Botkins
Rd., Huber Heights, OH 45424, (513) 233-2178, sent mail &
E-mail, swensotc@ss2.sews.wpafb.af.mil. Free to program-
mers of QL’s.

Update Magazine, PO Box 1095, Peru, IN 46970, Subs $18 per
year, supports Sinclair, Timex, and Cambridge computers.
Emil: fdavis @holli.com.

SUPPORT BUSINESSES

Hal Bower writes, sells, and supports B/PBios for Ampro,
SB180, and YASBEC. $69.95. Hal Bower, 7914 Redglobe
Ct., Severn MD 21144-1048, (410)551-5922.

The Computer Journal / #80

Sydex, PO Box 5700, Eugene OR 97405, (541)683-6033. Sells
several CP/M programs for use with PC Clones (*22Disk’
format/copies CP/M disks using PC files system).

Elliam Associates, PO Box 2664, Atascadero CA 93423,
(805)466-8440. Sells CP/M user group disks and Amstrad
PCW products. Email:??

Discus Distribution Services, Inc. sells CP/M for $150, CBASIC

$600, Fortran-77 $350, Pascal/MT+ $600. 8020 San Miguel
Canyon Rd., Salinas CA 93907, (408)663-6966.

Microcomputer Mail-Order Library of books, manuals, and
periodicals in general and H/Zenith in particular. Borrow items
for small fees. Contact Lee Hart, 4209 France Ave. North,
Robbinsdale MN 55422, (612)533-3226.

Star-K Software Systems Corp. PO Box 209, Mt. Kisco, NY
10549, (914)241-0287,BBS: (914)241-3307. SK*DOS 6809/
68000 operating system and software. Some educational prod-
ucts, call for catalog.

Peripheral Technology, 1250 E. Piedmont Rd., Marietta, GA
30067, (404)973-2156. 6809/68000 single board system. 68K
ISA bus compatible system.

Hazelwood Computers, RR#1, Box 36, Hwy 94@Bluffton,
Rhineland, MO 65069, (314)236-4372. Some SS-50 6809
boards and new 68000 systems.

AAA Chicago Computers, Jerry Koppel, (708)681-3782. SS-
50 6809 boards and systems. Very limited quanity, call for
information.

MicroSolutions Computer Products, 132 W. Lincoln Hwy,
DeKalb, IL. 60115, (815)756-3411. UNIFORM Format-trans-
lation, CompatiCard and UniDos products have been discon-
tinued. Web page: http://www.micro-solutions.com.

GIMIX/0S-9, GMX, 3223 Arnold Lane, Northbrook, IL. 60062,
(800)559-0909, (708)559-0909, FAX (708)559-0942. Repair
and support of new and old 6800/6809/68K/SS-50 systems.

n/SYSTEMS, Terry Hazen, 21460 Bear Creek Rd, Los Gatos
CA 95030-9429, (408)354-7188, sells and supports the MDISK
add-on RAM disk for the Ampro LB. PCB $29, assembled
PCB $129, includes driver software, manual.

Corvatek, 561 N.W. Van Buren St. Corvallis OR 97330,
(503)752-4833. PC style to serial keyboard adapter for Xerox,
Kaypros, Franklin, Apples, $129. Other models supported.

Morgan, Thielmann & Associates services NON-PC compat-
ible computers including CP/M as well as clones. Call Jerry
Davis for more information (408) 972-1965.

Jim S. Thale Jr., 1150 Somerset Ave., Deerficld IL 60015-
2944, (708)948-5731. Sells /O board for YASBEC. Adds
HD drives, 2 serial, 2 parallel ports. Partial kit $150, complete
kit $210.

Trio Company of Cheektowaga, Ltd., PO Box 594,
Cheektowaga NY 14225, (716)892-9630. Sells CP/M (& PC)
packages: InfoStar 1.5 ($160); SuperSort 1.6 ($130), and
WordStar 4.0 ($130).

Parts is Parts, Mike Zinkow, 137 Barkley Ave., Clifton NJ
07011-3244,(201)340-7333. Supports Zenith Z-100 with parts
and service.

DYNACOMP, 178 Phillips Rd. Webster, NY 14580, (800)828-
6772. Supplying versions of CP/M, TRS80, Apple, CoCo,
Atari, PC/XT, software for older 8/16 bit systems. Call for
older catalog.

43

%/

KA

Yolume Number {; Issues 1 to 9

* Serial interfacing and Mode ol

* Floppy disk formats, Print spooler.

* Adding 8087 Math Chip, Fiber optics

¢ S-100 HI-RES graphics.

* Controlling DC motors, Multi-user column.
» VIC-20 EPROM Programmer, CP/M 3.0.
o CP/M user functions and integration.

Yolume Number 2; Issues 10 to 19
* Forth tutorial and Write Your Own.

* 68008 CPU for S-100.

« RPM vs CPM, BIOS Enhancements.
* Poor Man's Distributed Processing.
* Controlling Apple Stepper Motors.

+ Facsimile Pictures on a Micro.

* Memory Mapped /O on a ZX81.

Yolume Number 3; issues 20 to 25

* Designing an 8036 SBC

« Using Apple Graphics from CP/M

* Soldering & Other Strange Tales

* Build an S-100 Floppy Disk Controller

* Extending Turbo Pascal: series

* Analog Data Aoquisition & Control

* Programming the 8035 SBC

* Vaiability in the BDS C Standard Library

* The SCSI Interface: series

« Using Turbo Pascal ISAM Files

* The Ampro Little Board Column: series

« C Column: series

* The Z Column: series

« The SCS| Interface: introduction to SCSI

+ Editing the CP/M Operating System

* INDEXER: Turbo Pascal Program

« introduction to Assembly Code for CP/M

* Ampro 186 Column

* ZTime-1: A Real Time Clock for the Ampro Z-
80 Little Board

Yolume Number 4; Issues 26 to 31
* Bus Sy Selecting a Sy Bus

« Using the SB180 Real Time Clock

+ The SCS! Interface: SCS| Adapter Software
* Inside Ampro Computers

* NEW-DOS: The CCP C ds (continued)

Y

T Compator Jourmal Back Tssucs

WordStar 4.0

issue Number 34;

« Developing a File Encryption System.

* Database: A continuation of the data base
primer series.

* A Simple Multitasking Executive: Designing
an embedded controlier multitasking
exscutive.

* ZCPRS3: Relocatable code, PRL files,
ZCPR34, and Type 4 programs.

* New Mi liers Have Si Chips
with BASIC or Forth in ROM are easy to

* Adh d CP/M: OS to BDOS
and BIOS, RSXs for CP/M 2.2.
« Macintosh Data File Conversion in Turbo

Pascal.

{ssue Number 35;

* All This & Modula-2: A Pascat-like
alternative.

* A Short Course in Source Code Generation:
Di bling 8088 soft to produce
modifiable asm source code.

* Real Computing: The NS$32032,

* S-100: EPROM Bumer project for S-100

harch h

* ZSiQ Comer

« Affordable C Compilers

* Concurrent Multitasiing: DoubleDOS

* 68000 TinyGiant: Hawthome's Low Cost 16-
bit SBC and Operating System

 The Art of Source Code Generation

* Feedback Control System Analysis

* Advanced CP/M: An up-to-date DOS, plus
details on file structure and formats.

¢ REL-Style Assembly Language for CP/M
and Z-System. Part 1: Selecting your
assembler, linker and debugger.

8 mber

1t i B Intradct
.

* The C Column: Graphics Primitive Packag

» The Hitachi HD64180: New Life for 8-bit
Systems

« ZSIG Comer. Command Line Generators and
Aliases

A Tutor Program in Forth: Writing a Forth
Tutor in Forth

 Disk Parameters: Modifying the CP/M Disk
Parameter Block for Foreign Disk Formats

« Build an A/D Converter for the Ampro Little
Board

« HD64180: Setting the Wait States & RAM
Retresh using PRT & DMA

« Using SCSI for Real Time Control

* Open Letter to STO Bus Manufacturers

» Patching Turbo Pascal

* Choosing a Language for Machine Control

* Better Software Filter Design

* MDISK: Adding a 1 Meg RAM Disk to Ampro
Little Board, Part 1

* Using the Hitachi hd64 180

« 68000: Why use a new OS and the 680007

« Detecting the 8087 Math Chip

 Floppy Disk Track Structure

* Double Density Floppy Controlier

« ZCPRA3 IOP for the Ampro Little Board

+ 32000 Hackers' Language

* MDISK: Adding a 1 Meg RAM Disk to Ampro
Little Board, Part 2

* Non-Preemptive Multitasking

* Scftware Timers for the 68000

« Lilliput Z-Node

* Using SCSI for Qeneralized VO

* Communicating with Floppy Disks: Disk
Parameters & their variations

« XBIOS: A Replacement BIOS for the SB180

* K-OS ONE and the SAGE

«R Desi
Program

" a o
gal Y

o Modula-2: A list of reference books.

* Temperature Measurement & Control:
Agricultural computer application.

* ZCPR3 Comer: Z-Nodes, Z-Plan, Amstrand
computer, and ZFILE.

* Real Computing: NS32032 experimenter
hardware, CPUs in series, software options.

o SPRINT: A review.

* REL-Style Assembly Language for CP/M &
ZSystems, part 2.

o Ady d CP/M: Erwi tal
programming.

Iss rar:

« C Pointers, Arrays & Structures Made
Easier: Part 1, Pointers.

* ZCPR3 Comer: Z-Nodes, patching for

NZCOM, ZFILER.

g ing: Basic C: p
fields, field definition, client worksheets.

* Shells: Using ZCPR3 named shell variables
to store date variables.

¢ Resident Prog : A detailed look at TSRs
& how they can lead to chaos.

¢ Advanced CP/M: Raw and cooked console
vo.

* ZSDOS: Anatomy of an Operating System:
Part 1.

issue Number 38:

« C Math: Doltars and Cents With C.

» Advanced CP/M: Batch Processing and a
New ZEX.

* C Pointers, Arrays & Structures Made
Easier: Part 2, Arrays.

o Z-System Comer: Shells and ZEX, Z-Node
Central, system security under 2-Systems.

« Information Engineering: The portable
Int tion Age.

* The ZCPR3 Comer: ARUNZ Dx ation

44

%///////,’(////////////////////////f//////////f///////// //
Hiteci1o stonlies in sto
o ablie ok
Issue Number 32: . Pbl Aidado:; ‘_‘l‘_ hing: Introduction to
* copies sti i . ishi nd K Publishing.
stil available . ?he:s:"?E)a(and hard :?sk :a;:g
issue Number 33; * Real Computing: The National
« Data File Conversion: Writing a Filter to Semiconductor NS320XX.
Convert Foreign File Formats * ZSDOS: Anatomy of an Operating Sy X
» Advanced CP/M: ZCPR3PLUS & How to Part 2.
Wirite Self Relocating Code .
. de:Bno: The Fivldngin a Series on Data ls:u ‘"“tf" 39"_\ .
Bases and Information Processing * Programming for f Assembly
+ SCS! for the S-100 Bus: Another Example of _ Lang chniques.
SCSI's Versatility «C Aided P! g: The HP
« A Mouse on any Hardware: implementing the LaserJet.
Mouse on a Z80 System * The Z-System Comer: System
« Systematic Elimination of MS-DOS Files: enhancements with NZCOM. N
Part 2, Subdirectories & Extended DOS + Generating LaserJet Fonts: A review of Digi-
Services Fonts.
« ZCPR3 Comer: ARUNZ Shells & Patching ~ * Advanced CP/M: Making old programs Z-
System aware.

* C Pointers, Arrays & Structures Made
Easier: Part 3: Structures.

¢ Shells: Using ARUNZ alias with ZCAL.

* Real Computing: The National
Semiconductor NS320XX.

Issue Number 40:

* Programming the LaserJet: Using the
escape codes.

» Beginning Forth Column: Introduction.

« Advanced Forth Column: Variant Records
and Modules.

* LINKPRL: Generating the bit maps for PRL
files from a REL file,

* WordTech's dBXL: Writing your own custom
dasianad hiei

g program.

¢ Advanced CP/M: ZEX 5.0xThe machine and
the language.

* Prog ning for Perf : A bly
language techniques.

* Programming Input/Output With C: Keyboard
and screen functions.

¢ The Z-System Comer. Remote access
systems and BDS C.

* Real Computing: The NS320XX

lssue Number 41:

* Forth Column: ADTs, Object Oriented
Concepts.

« Improving the Ampro LB: Overcoming the
88Mb hard drive limit.

¢ Howto add Data Structures in Forth

¢ Advanced CP/M: CPM is hacker's haven,
and Z-System Command Scheduler.

¢ The Z-System Comer: Extended Multiple
Command Line, and aliases.

« Disk and printer functions with C.

« LINKPAL: Making RSXes easy.

* SCOPY: Copying a series of unrelated files.

issue Number 42:

e Dy ic Memory Allocation: Allocating
memaory at funtime with examples in Forth,

» Using BYE with NZCOM.

¢ C and the MS-DOS Character Attributes.

* Forth Column: Lists and object oriented
Forth.

* The Z-System Corner: Genie, BDS Z and Z-
System Fundamentals.

* 68705 Embedded Controller Application: A
single~chip microcontroller application.

* Advanced CP/M: PluPerfect Writer and
using BDS C with REL files.

Issue Number 43:

« Standardize Your Floppy Disk Drives.

* A New History Shell for ZSystem.

+ Heath's HDOS, Then and Now.

* The ZSystem Corner: Software update
service, and customizing NZCOM.

« Graphics Programming With C: Routines for
the IBM PC, and the Turbo C library.

« Lazy Evaluation: End the evaluation as soon
as the result is known.

* $-100: There's still life in the old bus.

* Advanced CP/M: Passing parameters, and
complex efTor recovery.

Issue Number 44:

* Animation with Turbo C Part 1: The Basic
Tools.

« Multitasking in Forth: New Micros FEBFC11
and Max Forth,

* Mysteries of PC Floppy Disks Revealed: FM,

MFM, and the twisted cable.

* DosDisk: MS-DOS disk emulator for CP/M.

¢ Advanced CP/M: ZMATE and using lookup
and dispatch for passing parameters.

¢ Forth Column: Handling Strings.

¢ Z-System Comer: MEX and telecommuni-
cations.

Issue Number 45:

¢ Embedded Systems for the Tenderoot:
Getting started with the 8031.

e Z-System Corner: Using scripts with MEX.

¢ The Z-System and Twrbo Pascal: Patching
TURBO.COM to access the Z-System.

« Embedded Applications: Designing a Z80
RS-232 communications gateway, part 1.

* Advanced CP/M: String searches and tuning
Jetfind.

* Animation with Turbo C: Part 2, screen
interactions.

* Real Computing: The NS32000.

Issue Number 46:

* Build a Long Distance Printer Driver.

* Using the 8031's built-in UART .

* Foundational Modules in Modula 2.

* The Z-System Comer: Patching The Word
Plus spell checker, and the ZMATE macro
text editor.

¢ Animation with Turbo C: Text in the graphics
mode.

¢ Z80 Communications Gateway: Prototyping
and using the 280 CTC.

Issue Number 47:

 Controlling Stepper Motors with the 68HC11F

» Z-System Comer: ZMATE Macro Language

* Using 8031 Interrupts

« T-1: What it is & Why You Need to Know

* ZCPR3 & Modula, Too

+ Tips on Using LCDs: Interfacing to the
68HC705

« Real Computing: Debugging, NS32 Muiti-
tasking & Distributed Systems

* Long Distance Printer Driver: correction

* ROBO-SOG 90

Issue Number 48:;

 Fast Math Using Logarithms

 Forth and Forth Assembler

* Modula-2 and the TCAP

* Adding a Bernoulli Drive to a CP/M Computer
(Building a SCSI Interface)

¢ Review of BDS "'Z7

* PMATE/ZMATE Macros, Pt. 1

* 2-System Corner: Patching MEX-Plus and
TheWord, Using ZEX

Issue Number 49;

» Computer Network Power Protection

« Floppy Disk Alignment w/RTXEB, Pt. 1
« Motor Control with the FESHC11

* Home Heating & Lighting, Pt. 1

* Getting Started in Assembly Language
*» PMATE/ZMATE Macros, Pt. 2

» Z-System Comer/ Z-Best Software

Issue Number 50:

* Offload a System CPU with the Z181
 Floppy Disk Alignment wRTXEB, Pt. 2

* Motor Control with the F68HC 11

* Modula-2 and the Command Line

* Home Heating & Lighting, Pt. 2

* Getting Started in Assembly Language, Pt.2
* Local Area Networks

» Using the ZCPR3 10P

*» PMATE/ZMATE Macros, Pt. 3

* Z-System Corner, PCED/ Z-Best Software
« Real Computing, 32FX16, Caches

Issue Number 51:

« Introducing the YASBEC

* Floppy Disk Alignment wRTXEB, Pt 3

¢ High Speed Modems on Eight Bit Systems
* A 78 Talker and Host

* Local Area Networks—Ethemet

* UNIX Connectivity on the Cheap

* PC Hard Disk Partition Table

* A Short introduction to Forth

* Stepped Inference in Embedded Control
« Real Computing, the 32CG 160, Swordfish
* PMATE/ZMATE Macros

« Z-System Comer, The Trenton Festival

« Z-Best Software, the Z3HELP System

Issue Number 52:

» YASBEC, The Hardware

« An Arbitrary Waveform Generator, Pt. 1

* B.Y.O. Assembler...in Forth

* Getting Started in Assembly Language, Pt. 3

The Computer Journal / #80

* The NZCOM IOP

+ Servos and the FE8HC11

* Z-System Comer, Programming for
Compatibility

* Z-Best Software

* Real Computing, X10 Revisited

* PMATE/ZMATE Macros

* Home Heating & Lighting, Pt. 3

* The CPU280, A High Performance SBC

Issue Number $3:

* The CPU280

« Local Area Networks

. * An Arbitrary Waveform Generator

« Zod Fest ‘91

» Getting Started in Assembly Language
« The NZCOM IOP

Issue Number 54;

¢ B.Y.0, Assembler

¢ Local Area Networks

* Advanced CP/M

* ZCPR on a 16-Bit Intel Platiorm
* Real Computing

« interrupts and the Z80

* 8 MHZ on a Ampro

* Hariware Heavenn

+ What Zilog never told you about the Super8
* An Arbitary Waveform Generator
* The Development of TDOS

{ssue Number 85;

» Fuzzilogy 101

* The Cyclic Redundancy Check in Forth

» The intemetwork Protocol (IP)

* Hardware Heaven

* Real Computing

* Remapping Disk Drives through Virtual BIOS
* The Bumbling Mathmatician

* YASMEM

Issue Number §6;

* TCJ - The Next Ten Years

* Input Expansion for 8031

o Z-Sys Comer - Zed-Fest

+ Connecting IDE Drives to 8-8it Systems
* 8 Queens in Forth

« Real Computing - Linux, BSD 3886, Minix
« Kaypro-84 Direct File Transfers

* Analog Signal Generation

issue Number §7:

* 2-Sys Comer - Language Independence
* DR. $-100 - the start

* Home Automation with X10

« File Transter Profocols - Info

* MDISK at 8 MHZ. - Ampio Update

* Shell Sort in Forth

* Introduction to Forth

o Z AT Last! - ZCPR on a PC? MYZBO{

sue Number 58;
» 2-Sys Comer - Language independence ||
+ Real Computing - Minix, UZI, and GNU
« Affordable Development Tools
*DR. $-100 - Tips and info
« Mr. Kaypro - Move the Reset

¢ Z-Sys Corner - ZMATE MACRO usage
* Moving Forth - Part 1

» Center Fold - IMSAI MPU-A

+ Developing Tumkey Forth Applications
* Mr. Kaypro - Versions of Kaypros

* DR S-100 - Vendors

Issue Number 60:

* Next Ten Years - Pait |l

¢ Moving Forth Part i

* Center Fold - IMSAI CPA

« Four for Forth - Forth CPU's

* Debugging Forth

* Z-Sys Comer - 8 years of Z-System

« Mr. Kaypro - Tuming a Kaypro Il into a IV
*DR. S-100 - Letters

Issue Number 61:

¢ Z-Sys Comer - Automating GEnie Mail
* Multiprocessing / 6808 past |

¢ Center Fold - XEROX 820

* QC Using the Commodore 64

* DR §-100 - Spring Letters

+ Connecting 1DE Drives (IDE part IV)

* PC/XT Comer - Day-Old Computing

o Little Circuits - Battery Backup Circuits
* Multiprocessing Part Il

issue Number 67:

¢ European Beat - more AMSTRAD history
* Small Sy pport -

¢ Center Fold - SS-50/SS-30
¢ DR $-100 - TrentorvZ-Fest & letters

* Senal Kaypro Interrupts in Foith

* Real Computing - Tiny-TCP and WIN
« Little Circuits - Wire and Cable

* Moving Forth Part 5

Issue Number 68;

* Small System Support - Languages

« Center Fold - Pertec/Mits 4PI0

¢ Z-System Comer il - intro CP/M and Z-Sys
¢ PC/XT Comer - A bit of everything - Part |
* Little Circuits - CMOS and RC's

prog

* Real Computing - JPEG, WORM, archi
* Support ps for Classi

* Operating Systems - CP/M

* Mr. Kaypro - 5 MHz Upgrade

Issue Number 62;

* SCSt EPROM Programmer

* Center Fold - XEROX 820

+ DR S-100 - Exploring the S-100 Bus
* Moving Forth part lll

* Programming the 6526 CIA

* Reminiscing and Musings - 10th Year
* Modem Scripts

igsue Number 63:

* Z-Sys Comer - Failsafe Scripts in 4DOS
* SCSi EPROM Programmer - part I

« Center Fold - XEROX 820

* DA $-100 - Disk Drives and BIOS code
* Multiprocessing Pait Il

* 6809 Operating Systems

+ IDE Drives Part Il

Sue
* Z-Sys Corner - Failsafe Scripts in 4DOS ||
* Small-C - Review and comment
* Center Fold - last XEROX 820
* DR $-100 - Disk Drives and BIOS - part li
* Moving Forth Pait IV
* Small Systems - 6800/6809 History
« Mr. Kaypro - Sign on and Clock Upgrade
+ 1DE Drives - Part lll

sue Number
« Small System Support - 68xx Serial Comm
* Sinclair 2¢81 - Letters and Books
* Center Fold - ZX80/81
* DR $-100 - Christmas letters
» Real Computing - Linux and Linking
* European Beat - AMSTRAD in Europe
* PC/XT Comer - Day-Old Computing
« Little Circuits - Reset Circuits
* Leveis of Forth - Selecting a Language

Issue Number 66:
* 2-Sy Comer - Failsafe Scripts in 4DOS

* Computing Timer Values - M bles, C

* Multip ing Forth Part 4
* Mr. Kaypro - Notes, Repairs, and Macros

Issue Number 69;

* Small System Support - 6809 ASM, Flex

* Center Fold - S-100 IDE

« Z-System Comer |l - Intro, part 2

+ Real Computing - Tiny-TCP

¢ PC/XT Corner - Stepper Motors and Forth
* DR. 5-100 - Mail Bag

* Moving Forth Part 6

+ Mr. Kaypro - Advent Decoder Construction

Issue Number 70:

+ Smalt System Support - 6808 ASM

¢ Center Fold - Jupiter ACE

¢ Z-System Comer Il - Intro part 3

¢ PC/XT Corner - Stepper Mators & Forth

* DA. $-100 - Mail Bag

« Multiprocessing Part §

* European Beat - 8-bit idiot and AMSTRAD

Issue Number 71:

* Computing Hero of 1984 - David Jaffe

* Small System Support - 6808 ASM

* Center Foki - Hayes 80-103A S-100 modem
* Power Supply Basics

* PC/XT Comer - Stepper Motors

+ Connecting |DE Drives (5) - GIDE Preview
* DR. $-100 - Generic IDE and CompuPro

* Moving Forth Part 7

* Mr. Kaypro - ROM options

* 8048 Emulator Part 1

Issue Number 72:

* Beginning PLD - good and bad

« Small System Support - 'C' and ASM
* Center Fold - Rockwell R65F11

* Playing With Micros - § to learn with
* Real Computing - Languages

+ Small Tools Part 1 - Forth, 88HC11

* DR. $-100 - CompuPro 8080/8086

* Moving Foith Part 7.5

* 8048 Emulator Part 2

issue Number 73:
* $10 XT - what you can get at a swap meet

+IDE Part 6

* Real Computing - Linux

* Small Tools Part Il - New Micros F68HC11
* DR. S-100 - Trenton and Letters

* PC/XT Corner - software quandaries

* 8048 Emulator Pait 3

Issue Number 74;

« Antique or Junk - How to judge your system
* Small System Support - 'C’ and ASM

* Center Fold - S-100 Power Supply

* Real Computing - Linux and Minix

* AMSTRAD PCW Now

* DR. S-100 - Mailbag

* Mr. Kaypro - Adding Composite Monitors
* Palmtech CPUZ180 - Review

* Disk /O in Forth

¢ Moving Forth pait 8

Issue Number 75:

* The European Beat - East German Z80
* Small System Support - ‘C' and ASM

* Center Fold - Standard Bus and /O

* Moving Forth part 8

+ Real Computing - Rick moved

+ Embedded Control Using the STD Bus
* DA, S$-100 - Mailbag

* EPAOM Simulator

* High-Speed Serial VO for the Applicard
¢ Disk /O in Forth, Pt. 2

* T9600 Source Code (Small Tools)

issue Number 76:

* Real Computing - Minix and more

* PC/XT Comer - Bank Switching/Supercharge
* The European Beat - 10 years for user group
* Alternatives to the XT

* DR. $-100 - GIDE and the Jade Bus Probe

¢ Center Fold - JADE Bus Probe

* PC Time Clock - Improving Accuracy

* PC Security System - Home Security

* Small System Support - ‘C’' and ASM

* Floppy Disk Problems - design problems

Issue Number 77:

* Mr. Kaypro - External Video

* Hands-on with PLD's

* Center Fold - CPU280

* The First TRS-80

* Program This! - the Z80 SIO

+ Small System Support - Prime Numbers in C

Issue Number 78

* 6502 DIY Board

* Program This! - 8051 Startup Code

« Center Fold - AMR 80552

* Simplex lll - Homebuilt TTL CPU

* Real Computing - Small C, C-64, Win95
* Small System Support - C and A bl

Issue Number 79:

* PC serial port in Forth

* Program This! - AT Modem Commands

* Center Fold - P112 Z182 board

o Simplex 1l - Homebuilt TTL CPU

* Real Computing - Real-time Control

* Small System Support - C and Assembler
* Embedded Development Choices

« Multitasking Forth + Real Computing - TCP/P and OSI
* Small System Support - 'C' and 68xx * Small System Support - 'C*' and ASM
{ssue Number 59; « Center Fold - Advent Decoder Board » Center Foid - 640K XT
(u.s. Canada/Mexico Europe/Other Name:
Subscriptions (CA not taxable) (Surface) (Air) (Surface) (Air) Address:
1year (6 issues) $24.00 $3200 $34.00 $34.00 $44.00
2 years (12 issues) $44.00 $60.00 $64.00 $64.00 $84.00
Back Issues (CA tax) Shipping + Handling for each Issue ordered
Bound Volumes $20.00ea X$3.00 X$3.50 X$6.50 x$4.00 X$17.00
#32thru #43 are $3.00ea. X$1.00 Xx$1.00 Xx$1.25 x$1.50 x$2.50 Email:
#44 and up are $4.00ea. x$125 x$125 x$1.75 Xx$2.00 x$3.50)
ftems: Credit Card # -

-15% for 10+ with subscription

\.

California Residents add 7.25%

Back Issues Total

-10% for 10 or more or with subscription,

- discount

Sales TAX
Shipping Total
Subscription Total
Total Enclosed

- exp___/

Payment is accepted by check, money order, or Credit Card (M/C,
VISA, CarteBlanche, Diners Club). Checks must be in US funds,
drawn on a US bank. Credit Card orders can call 1(800) 424-8825.

TCI The Computer Journal

P.O. Box 3900, Citrus Heights, CA 95611-3900
Phone (916) 722-4970 / Fax (916) 722-7480

J

The Computer Journal / #80

45

The Computer Corner

By Bill Kibler

Welcome back to TCJ! I say that only
because time is moving on and each
issue is now taking some time to hap-
pen. Dave would love to move things
faster than he is, but the rate of money
coming into TCJ is rather slow. When
I was editor, I would just dig deep into
my pocket and find an extra thousand
or so and keep on moving. Of course I
never did get that money back and had
to drop out as editor because of it. Dave
however has no pockets to pull from
and thus must print when he finally
has the money.

1 would love to help out and have a few
times, but my own expenses have
grown and I must make up for three
years of losses. That of course explains
why I am working on UNIX systems
and doing C. I have almost recovered
from the loss of sleep, free time, and

“money, only to look back and wish I
could have made it work. Our time as
the magazine supporting collectors is
still around the corner, but systems like
NT have people considering the old al-
ternatives.

WINNT

Needing to pay for food and such has
caused me to do regular programming
on UNIX platforms. We use Win95
and WinNT platforms to run our tools
on. These tools enable us to talk to the
HP-Unix platforms and do our pro-
gramming tasks. It gives me a chance
to compare and understand better the
advantages of simple and complex sys-
tems.

To show how much I have been con-
verted to Unix, my fingers now work
very automatically to move the cursor
around in VI, the Unix editor. Vi is a
little simple but very straight forward
editor. On almost all platforms every

46

Unix programmer or administrator
must know how to use it. Some even
love it, I am not there yet. It is how-
ever some of these little Unix tools that
can give you a good feeling about us-
ing that platform. The tools usually
work (hear that M/S), a manual is on-
line, and when you usually have a
problem, someone has already created
a'tools for you. It also explains why so
many Unix tools are ending up on
PC's.

Now I have moved my own box at work
from NT3.51 to NT4.0. I liked 3.51
better, mostly for it’s regular windows
setup (like 3.1). The new win95 desk-
top I find a drag, especially all the lay-
ers one must go through to change
something. That of course depends on
if you are allowed to change them at
all. They have changed many tool
names, removed some, replaced others.
I have tried to add a parallel port hard
drive to the box several times now, all
without success. It says it is there,
works, is running, but I am unable to
get a drive letter.

Now under DOS I use the fdisk pro-
gram to find out if T had a drive that
was not setup correctly and thus was
the reason it wasn’t being seen. Fdisk
is no where to be found in NT, nor can
I find a way to test for an unformatted
hard drive. It may be there, they just
don’t want you to find it without hav-
ing gone to one of their special thou-
sand dollar schools.

At this point I say give me Linux or
plain old DOS, even CP/M would be
better than this nonsense. But I have
one item to top even this mess.
MMX

Well Intel has their new CPU (the

MMX or Pentium Pro, which is more
Media Hype than horsepower upgrade)
out and got one in the wings as well. I
was reading an article in EETimes that
caught my eye about the new CPU’s.
The units have power management
built in, not to mention millions of
transistors. This means they can idle
back and save power when possible.
These units also are run on anywhere
from 1.8 to 3.5 volts depending on
CPU speed, current needs, and tested
performance at a given voltage. To do
that a 4 or 5 bit signal is supplied to
tell the power supply what voltage to
select.

Two things came to mind, one the
added complexity and a problem talked
about in the article. I felt the complex-

Figure 1: 5 Bit voltage Code
Voltage D4 D3 D2 D1 DO
3.50 1 0 0O 0 0
3.40 1 0 0 0 1
3.30 1 0 0O 1 0
3.20 1 0 0 1 1
3.10 1 0 1 0 0
3.00 1 0 1 0 1
2.90 1 0 1 1 0
2.80 1 0 1 1 1
2.70 1 1 0O 0 O
2.60 1 1 0 o0 1
2.50 1 1 0o 1 0
2.40 1 1 o 1 1
2.30 1 1 1 0 0
2.20 1 1 1 0 1
2.10 1 1 1 1 0
2.05 0 0 0O 0 o0
2.00 0 0 0o 0 1
1.95 0 0 0 1 0
1.90 0 0 0 1 1
1.85 0 0 1 0 O
1.80 0 0 1 1 0
*note D4 all ones for backward
compatiblity with older cpu
types.

The Computer Journal / #80

ity is partly to enable a better yield on
the parts, as some chips were being
chucked that fell outside some of the
design parameters. However if the volt-
age is kept a bit low or hi these once
rejected chips will now work just fine,
or at least they think so. I am not sure
it’s worth the extra hassles and pos-
sible component costs and failures.

Those cost and problems were of
course the main concern. You see the
part can drop current usage to around
300 mills. But hit a key and zap your
up to 12 Amps, yup 12 AMPS! That is
a big change for any power supply, not
to mention a whole lot of amps for a
single CPU chip. I am not sure what
gets me more, the switching from noth-
ing to full power, or the fact that full
power is 12 amps. You need some
pretty big traces to handle those amps,
not to mention the BIG spike such a
current change will cause elsewhere in
the system. Talk about a few design
nightmares.

The Real World

Reading about all these changes makes
me feel good about some of my other
projects. I am still doing some 68HC11
work on the side. It is mostly C and
moving along rather smoothly. I got a
good laugh out of an article in a C sup-
port magazine. The writer was talking
about doing embedded C++ and how
a reduced set was needed. The funny
part was how he started the article. He
mentioned how most embedded prod-
ucts are too limited for C and espe-
cially C++.

This of course didn’t stop him from
continuing on talking about using C++
for embedded work. It is true a few or-
ganizations are using C and C++ for
embedded systems, it is just those em-
bedded products are very expensive
and usually have DOD stamped all
over them. I still have problems with
people who use the same term for mil-
lion dollar projects and those in which
the whole product will cost less then
ten dollars. We need a new list of terms
so people can understand there is a big
difference between these two extremes
of the concept.

To me embedded systems generally

have a cost of well under $100 and are
not a major design concern or cost.

The Computer Journat / #80

Industrial real time control systems on
the other hand are typically a major
part of the cost. Maybe another idea is
one that Dave keeps using, it’s embed-
ded if one person can do the design
work, while it is an industrial control-
ler if it takes a full staff to design and
support the product. What terms might
you think are best to separate these two
very different fields of work. Send me
an e-mail and I will list the ideas next
time.

Product Failure

For those who wonder what has hap-
pened with our own CDROM project,
I can say it is moving along slowly. I
now have up and running a CCS and
a GodBout S-100 system with 8 inch
disks. Between the two I hope to start
going back through all my old disks
and some recently acquired disks look-
ing for items of interests. My main
interest is source to BIOS and utilities.
So far I have a good collection, but few
have been moved to my hard drive for
cataloging.

Over the years I have heard many sto-
ries about users turning on their old
systems only to get nothing. Well it
finally happened to me the other day.
I hadn’t used several units in about
three or four months and moved them
into position to help with the disk cata-
loging. I tried three of the Z100’s that
had worked earlier and one was still
connected to the 8 inch drives I was
also going to use for copying. Well you
can probably guess that not a one of
the units would boot up. A couple had
video problems, one just wouldn’t boot
no matter what. I finally gave up for
now and dug out an older terminal and
used that to test the S-100 systems
with.

My idea had been to use a Z-100 for a
terminal with the occasional copy
when one of the S-100 systems
wouldn’t read the 8" disk. The Z-100
also can copy from CP/M disk to
MSDOS disk using one of their own
utilities. Later checking showed the
problem to be water damage that eaten
away some of the traces and messed up
one of the sockets. Where the water
came from, I have no idea, but what a
mess. I now have a better understand-
ing of the frustration so many of you
have told me about. However don’t

think using PC’s will keep it from hap-
pening.

I got a panic call from an old friend
who has some knowledge of comput-
ers. His major skill set is two-way ra-
dio which he did till he retired re-
cently. He has played with computers
some, but does not yet have the full
grasp of what can go wrong. I have
tried to help him resolve problems with
windows which only frustrated him
more as we often hit one wall or an-
other.

This problem had to do with adding a
second printer, in this case one of the
newer Epson. When attempting to send
data to it, he got back a paper out mes-
sage, no matter what. My friend had
gotten a second parallel port card for
his PC. When trying that card, noth-
ing work, and thus a phone call to me.
I re-checked all he did and drug the
printer home where it tested just fine.

I went back the next day and tried a
few more things. First I checked the
new parallel card and decided all the
jumpers needed to be opposite from
what the tech at the store told him. I
used MSD and had a different, or OK
status report on the two printer ports.
Now that we knew the PC tech was
wrong and one problems was conflict-
ing port addresses, we tried the print-
ers again.

After a few minor tests, all started to
work properly. The problem it seems
starts with his old parallel port which
gives a paper out error on the Epson
no matter what, a mis-configured sec-
ond board, and not enough experience
to know that most computer store techs
have trouble using the correct end of a
screwdriver. I guess at this point I need
to do my normal complaint and say
how bad it is and all, but I did that far
too many times already, so I will just
let it pass.

Till Next Time
Speaking of passing, I just ran out of
space, so hope your trials and tribula-

tions are minor ones, and keep hack-
ing. Bill.

47

TCJ CLASSIFIED ADS

CLASSIFIED RATES!
$5.00 PER LISTING!

TCJ Classified ads are on a prepaid
basis only. The cost is $5.00 per ad
entry. Support wanted is a free service
to subscribers who need to find old or
missing documentation or software.
Please limit your requests to one type of
system.

Commercial Advertising Rates:

Size Once 4+
Full $150 $90
1/2 Page $80 $60
1/3 Page $60 $45
1/4 Page $50 $40
Market Place $30 $120/yr

The Computer Journal
P.O. Box 3900
Citrus Heights, CA 95611-3900

MAGAZINES AND BOOKS __

Historically Brewed. The magazine of
the Historical Computer Society. Read
about the people and machines which
-changed our world. Buy, sell and trade
"antique" computers. Subscriptions $14,
or try an issue for $3. HCS, 3649
Herschel St., Jacksonville, FL 32205.

Start your own technical venture! Don
Lancaster's newly updated INCRED-
IBLE SECRET MONEY MACHINE
II tells how. We now have autographed
copies of the Guru's underground clas-
sic for $21.50. Synergetics Press, Box
809-J, Thatcher AZ, 85552.

THE CASE AGAINST PATENTS
Throughly tested and proven alterna-

* tives that work in the real world. $33.50.
Synergetics Press, Box 809-J, Thatcher
AZ, 85552.

Remember, TCJ has all Back
Issues available. See the
Back Issues page for a list of
the articles in each issue.

48

FOR SALE

TRS-80 - MODELS L, 2, IT1, IV, 12,
16, POCKET COMPUTER, AND
COCO: Software, hardware, internal
and external disk drives (360K/720K),
hard drive's (both complete and bubles),
replacement motherboards, floppy drive
controilers, video boards, RS-232
boards, keyboards, and more. Send
4x10 SASE for list.

Pete Bumgardner, Rt. 4 Box 36-H, Fort
Payne, AL 35967-9408, (205)845-6581.

FOR SALE: THE FORTH ARCHIVE
from taygeta.com on CDROM is avail-
able from Mountain View Press, Rt 2
Box 429, La Honda, CA. 94020
Ph: 415-747-0760
ghaydon@forsythe.stanford.edu.

SUPPORT / INFO WANTED _

Wanted: Intel SDK-85 documentation.
This is a single board design kit with
the 8085 CPU, includes a hex keypad
and 7 segment LED readout. I have
several of these units and would con-
sider trading for interesting older com-
puters. Ron Wintriss, 100 Highland
Ave., Lisbon, NH 03585.

Electronic Design

Dave Baldwin

Microprocessor, Digital,
and Analog circuit design.
PC layout and more.

Voice (916) 722-3877
Fax (916) 722-7480
BBS (916) 722-5799

a N

Kibler Electronics

Hardware Design &
Software Programming
8051, 6805, 280, 68000, x86
PLC Support and
Documentation

Bill Kibler
P.O. Box 535
Lincoln, CA 95648-0535
(916) 645-1670

e-mail: kibler@psyber.com
http://www.psyber.com/~kibler

J

The Computer Journal / #80

\

TC J The Computer Journal

(TCJ MARKET PLACE)

Advertising for small business

Advent Kaypro Upgrades

TurboROM. Allows flexible Fir.st Insertion: $30
configuration of your entire Reinsertion: $25
system, read/write additional Full Six issues $120

Rates include typesetting.

formats and more, only $35. Payment must accompany order.

R . i VISA, MasterCard, Diner's Club,
This blank space is for Replacement Floppy drives and Carte Blanche accepted. Checks,
Your ad. Hard Drive Conversion Kits. Call money orders must be US funds.
or write for availability & pricing. Resetting of ad consitutes a new
- advertisement at first time
insertion rates. Mail ad or
contact
The Computer Journal The Computer Journal
P.O. Box 3900 P.O. Box 3300
Citrus "gf:;’;zg_‘:;;?"'”oo Citrus Heights, CA 95611-3900
Fax (916) 722-7480 (916) 722-4970
Fax (916) 722-7480 J
.
(= N\
CP/M SOFTWARE VINTAGE COMPUTERS MORE POWER!
100 page Public Domain Cata- IBM Compatibles

log, $8.50 plus $1.50 shipping

Tested - Used Parts for 68HC11, 80C51 & 80C166
and handling. New CP/M 2.2 k

PC/XT AT PS/2 I & More Microcontrollers.
Working systems from $50 M Faster Hardware.

manual $19.95 plus shipping. All X X
) parts including - S
Also MS-DOS software. Disk cases monitors floppies Faster Software.

Copying including AMSTRAD. . | More Productive.

Send self addressed, stamped hard ?éi;i?:;bgp?c‘:‘ IDE More Tools and Utilities.
envelope for free Flyer, Cata- Send 5x7 SASE to Low cost SBC’s from $84. Get it
log $1.00. Vintage Computers done today! Not next month.
Paul Lawson i For brochure or applications:
Elliam Associates 1673 Litchfield Turnpike AM Research

Box 2664 | Woodbridge, CT 06525 _P.O. Box 43
Atascadero, CA 93423 or call for a faxed list Loomis, CA 95650-9701
805-466-8440 203-389-0104 1(800) 949-8051

” http://www.AMResearch.com

VERSATILE 80C32 AND 68HCI11

The DCB032-1 includes the following:

SINGLE BOARD COMPUTERS | {ITHE FORTH SOURCE $7 .95 68HC11

o i, 0? g#;oa&csz processor. Slngle Board
* 2K

+ 4 difforent memory maps. Hardware & Software 3",;5,“5,"2?“"5'0;‘: ":f"’ Computer

« Extended BASIC-52 with 28 additional commands. g o S B C 8 K
Yr&ac% Isat“ lgdil.del the foliowing: SER-SC, Opi;;d‘ :: -

« 8MHz 0cessor. Serial EEPR

B g e s 7] s St
. with custom og and digi comm y

All units include the following standard features: o 8192 Bytes EEPROM
R MOUNTAIN VIEW 1|

+ 8-channel/8-bit A/D. PRESS ¢ 24-TTL 1/O Bits

« Centronics parallel printer port. . ¢ 8-A/D Inputs

 a-Dits o digital VO, @ Power Reset Circult

+ Watch dog timer © 8 Mhz Clack
'“?:&w::ﬁom1zvdwcpowmuppcy Glen B. Haydon, M.D. ¢ Log Data with SER-$C
: E‘E:’;a port. fon comector Route 2 Box 429 A Complete 68HC11 Development System.

« 30 day money back guarantee. La Honda . CA 94020 Now "CodeLoad+ 2.0" and Samplie Programs.

* One year parts and labor warranty.
All unit come with a 9 volt DC wall aube, serial cable, users manual,
and DC_TERM terminal software. A utility disk of shareware and

No EPROMSs o EPROM Programmers!
500 Pages of Manuals, 3.5" Utility Disk.

fresware is also included at no charge. (41 5) 747-0760 LDG Electronics w
D. C. MICROS 140.00 kit or assembled and 1445 Parran Road Voice / Fax
1843 Sumner Ct. tested. Add $5.00 shipping http://www.taygeta.com/jfar/mvp.html St. Leonard, MD 20683 410-586-2177

Las Cruces, NM 88001} and handiing plus $5.00 for
Ph. (505) 524-4029 coD

